精英家教网 > 高中数学 > 题目详情

【题目】已知等边三角形的边长为4,四边形为正方形,平面平面 分别是线段 上的点.

(Ⅰ)如图①,若为线段的中点, ,证明: 平面

(Ⅱ)如图②,若 分别为线段 的中点, ,求二面角的余弦值.

【答案】(Ⅰ)见解析;(Ⅱ) .

【解析】试题分析:(Ⅰ)根据中位线定理及平行四边形性质可得

试题解析:

(Ⅰ)证明:取的中点,连接 ,则

易知的中位线,

平面 平面

平面,易知四边形为平行四边形,

平面 平面 平面.

平面 平面平面

平面 平面.

(Ⅱ)连接,则

平面平面,平面平面 平面

平面,分别以 所在直线为

轴, 轴, 轴建立如图所示的空间直角坐标系,

设平面的法向量为,则

,得,故

设平面的法向量为,则

,取,得,故

.

易知二面角为钝二面角,故二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若执行如图的程序框图,则输出的a值是(
A.2
B.﹣
C.﹣
D.﹣2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于给定的正整数k,若数列lanl 满足

=2kan对任意正整数n(n> k) 总成立,则称数列lanl 是“P(k)数列.学科@

(1)证明:等差数列lanl是“P(3)数列”;

若数列lanl既是“P(2)数列”,又是“P(3)数列”,证明:lanl是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内有实力企业纷纷进行海外布局,第二轮企业出海潮到来.如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设30多个分支机构,需要国内公司外派大量70后、80后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从70后和80后的员工中随机调查了100位,得到数据如下表:

愿意被外派

不愿意被外派

合计

70后

20

20

40

80后

40

20

60

合计

60

40

100

(Ⅰ)根据调查的数据,是否有90%以上的把握认为“是否愿意被外派与年龄有关”,并说明理由;

(Ⅱ)该公司举行参观驻海外分支机构的交流体验活动,拟安排4名参与调查的70后员工参加.70后员工中有愿意被外派的3人和不愿意被外派的3人报名参加,现采用随机抽样方法从报名的员工中选4人,求选到愿意被外派人数不少于不愿意被外派人数的概率.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

(参考公式: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分15分)如图,已知抛物线,点A,抛物线上的点.过点B作直线AP的垂线,垂足为Q.

)求直线AP斜率的取值范围;

)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C的焦点与椭圆 =1的焦点相同,且渐近线方程为y=± x.
(1)求双曲线C的标准方程;
(2)设F1为双曲线的左焦点,P为双曲线C的右支上一点,且线段PF1的中点在y轴上,求△PF1F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线是自然对数的底数)处的切线与圆在点处的切线平行.

(Ⅰ)证明:

(Ⅱ)若不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不等式(x+ )( ﹣x)≥0的解集是(
A.{x|﹣ ≤x≤ }
B.{x|x≤﹣ 或x≥ }??
C.{x|x<﹣ 或x> }
D.{x|﹣ <x< }

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(18)(本小题满分12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙中心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名B1,B2
B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示。
(I)求接受甲种心理暗示的志愿者中包含A1但不包含B3的频率。
(II)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX。

查看答案和解析>>

同步练习册答案