【题目】2016年巴西奥运会的周边商品有80%左右为“中国制造”,所有的厂家都是经过层层筛选才能获此殊荣.甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,采用分层抽样的方法从甲、乙两厂生产的产品共98件中分别抽取9件和5件,测量产品中的微量元素的含量(单位:毫克).下表是从乙厂抽取的5件产品的测量数据:
编号 | 1 | 2 | 3 | 4 | 5 |
x | 169 | 178 | 166 | 175 | 180 |
y | 75 | 80 | 77 | 70 | 81 |
(1)求乙厂生产的产品数量:
(2)当产品中的微量元素x、y满足:x≥175,且y≥75时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量:
(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及数学期望.
科目:高中数学 来源: 题型:
【题目】已知椭圆 的离心率为 ,以椭圆的四个顶点为顶点的四边形的面积为8.
(1)求椭圆C的方程;
(2)如图,斜率为 的直线l与椭圆C交于A,B两点,点P(2,1)在直线l的上方,若∠APB=90°,且直线PA,PB分别与y轴交于点M,N,求线段MN的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数g(x)=lnx﹣ax2+(2﹣a)x,a∈R.
(1)求g(x)的单调区间;
(2)若函数f(x)=g(x)+(a+1)x2﹣2x,x1 , x2(x1<x2)是函数f(x)的两个零点,f′(x)是函数f(x)的导函数,证明:f′( )<0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知x0∈R使得关于x的不等式|x﹣1|﹣|x﹣2|≥t成立.
(1)求满足条件的实数t集合T;
(2)若m>1,n>1,且对于t∈T,不等式log3mlog3n≥t恒成立,试求m+n的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区2009年至2015年农村居民家庭人均纯收入y(单位:千元)的数据如表:
年份 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
附:回归直线的斜率和截距的最小二乘估计公式分别为: . .
参考数据:(﹣3)×(﹣1.4)+(﹣2)×(﹣1)+(﹣1)×(﹣0.7)+1×0.5+2×0.9+3×1.6=14.
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com