精英家教网 > 高中数学 > 题目详情
(2011•广东模拟)已知函数f(x)=ex+ax,g(x)=exlnx.(其中e为自然对数的底数),
(Ⅰ)设曲线y=f(x)在x=1处的切线与直线x+(e-1)y=1垂直,求a的值;
(Ⅱ)若对于任意实数x≥0,f(x)>0恒成立,试确定实数a的取值范围;
(Ⅲ)当a=-1时,是否存在实数x0∈[1,e],使曲线C:y=g(x)-f(x)在点x=x0处的切线与y轴垂直?若存在,求出x0的值;若不存在,请说明理由.
分析:(I)据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,再根据两直线垂直建立等式关系,解之即可.
(II)当x=0时,显然f(x)=ex>0恒成立;当x大于0时,令f(x)大于0,解出a大于一个函数,设这个函数为Q(x),求出Q(x)的导函数,分x大于0小于1和x大于1两种情况讨论导函数的正负,进而得到函数的增减性,根据函数的增减性得到Q(x)的最大值,即可得到a的取值范围;
(III)把f(x)和g(x)的解析式代入y中确定出y的解析式,设M(x)为y的解析式,求出M(x)的导函数,h(x)=
1
x
+lnx-1,求出h(x)的导函数,由x的范围得到导函数为正数,进而得到h(x)在[1,e]上为增函数,得到h(1)为最小值,即可得到M(x)的最小值,而曲线C:y=g(x)-f(x)在点x=x0处的切线与y轴垂直,即切线的斜率为0,即导函数的值为0,与导函数的最小值为1矛盾,所以不存在实数x0∈[1,e],使曲线C:y=g(x)-f(x)在点x=x0处的切线与y轴垂直.
解答:解:(Ⅰ)f'(x)=ex+a,(1分)
因此y=f(x)在(1,f(1))处的切线l的斜率为e+a,(2分)
又直线x+(e-1)y=1的斜率为
1
1-e
,(3分)
∴(e+a)
1
1-e
=-1,
∴a=-1.(5分)
(Ⅱ)∵当x≥0时,f(x)=ex+ax>0恒成立,
∴先考虑x=0,此时,f(x)=ex,a可为任意实数;(6分)
又当x>0时,f(x)=ex+ax>0恒成立,
a>-
ex
x
恒成立,(7分)
设h(x)=-
ex
x
,则h'(x)=
(1-x)ex
x2

当x∈(0,1)时,h'(x)>0,h(x)在(0,1)上单调递增,
当x∈(1,+∞)时,h'(x)<0,h(x)在(1,+∞)上单调递减,
故当x=1时,h(x)取得极大值,h(x)max=h(1)=-e,(9分)
∴要使x≥0,f(x)>0恒成立,a>-e,
∴实数a的取值范围为(-e,+∞).(10分)
(Ⅲ)依题意,曲线C的方程为y=exlnx-ex+x,
令u(x)=exlnx-ex+x,则u′(x)=
ex
x
+exlnx-ex+1
=(
1
x
+lnx-1)ex+1

v(x)=
1
x
+lnx-1
,则v′(x)=-
1
x2
+
1
x
=
x-1
x2

当x∈[1,e],v'(x)≥0,故v(x)在[1,e]上的最小值为v(1)=0,(12分)
所以v(x)≥0,又ex>0,∴u′(x)=(
1
x
+lnx-1)ex+1
>0,
而若曲线C:y=g(x)-f(x)在点x=x0处的切线与y轴垂直,
则u'(x0)=0,矛盾.(13分)
所以,不存在实数x0∈[1,e],使曲线C:y=g(x)-f(x)在点x=x0处的切线与y轴垂直.
点评:此题考查学生会利用导数求曲线上过某点切线方程的斜率,掌握两条直线垂直的判定,掌握导数在最大值、最小值中的运用,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)给定函数f(x)=
x2
2(x-1)

(1)试求函数f(x)的单调减区间;
(2)已知各项均为负的数列{an}满足,4Sn•f(
1
an
)=1
,求证:-
1
an+1
ln
n+1
n
<-
1
an

(3)设bn=-
1
an
,Tn为数列 {bn} 的前n项和,求证:T2012-1<ln2012<T2011

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广东模拟)已知集合M={y|y=x2-1,x∈R},N={x|y=
2-x2
}
,则M∩N=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广东模拟)已知函数f(x)=
a-x
+
x
(a∈N*),对定义域内任意x1,x2,满足|f(x1)-f(x2)|<1,则正整数a的取值个数是
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广东模拟)已知命题“?x∈R,x2+2ax+1<0”是真命题,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广东模拟)已知线段AB的两个端点分别为A(0,1),B(1,0),P(x,y)为线段AB上不与端点重合的一个动点,则(x+
1
x
)(y+
1
y
)
的最小值为
25
4
25
4

查看答案和解析>>

同步练习册答案