精英家教网 > 高中数学 > 题目详情

【题目】在椭圆上,过轴的垂线,垂足为

1)若点满足,试求点的轨迹的方程;

2)直线相交于两点,且与(1)中的相切,线段的垂直平分线与轴相交于点,求的取值范围.

【答案】(1);(2).

【解析】

(1)设,,的坐标由向量间的关系,求出的坐标之间的关系,再由相关点法求出的轨迹方程.

(2)设直线,联立与两个切线的方程,由题意得与直线参数的关系,由参数的范围求出的取值范围.

解:(1)设,则,,,

,所以,解得:,

在椭圆上,所以动点的轨迹的方程:.

(2)当直线 的斜率不存在时,不符合题意,舍去;

当直线的斜率存在时,设直线的方程为:

联立与椭圆的方程,整理得:

,化简得:

因为直线与椭圆交于,,设,,的中点

联立直线与椭圆的方程整理得:

,,

,所以的中垂线方程:

,得,所以②,由①②得

,则

所以的取值范围:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近来国内一些互联网公司为了赢得更大的利润、提升员工的奋斗姿态,要求员工实行“996”工作制,即工作日早9点上班,晚上21点下班,中午和傍晚最多休息1小时,总计工作10小时以上,并且一周工作6天的工作制度,工作期间还不能请假,也没有任何补贴和加班费.消息一出,社交媒体一片哗然,有的人认为这是违反《劳动法》的一种对员工的压榨行为,有的人认为只有付出超越别人的努力和时间,才能够实现想要的成功,这是提升员工价值的一种有效方式.对此,国内某大型企业集团管理者认为应当在公司内部实行“996”工作制,但应该给予一定的加班补贴(单位:百元),对于每月的补贴数额集团人力资源管理部门随机抽取了集团内部的1000名员工进行了补贴数额(单位:百元)期望值的网上问卷调查,并把所得数据列成如下所示的频数分布表:

1)求所得样本的中位数(精确到百元);

2)根据样本数据,可近似地认为员工的加班补贴服从正态分布,若该集团共有员工40000人,试估计有多少员工期待加班补贴在8100元以上;

3)已知样本数据中期望补贴数额在范围内的8名员工中有5名男性,3名女性,现选其中3名员工进行消费调查,记选出的女职员人数为,求的分布列和数学期望.

附:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,所在平面互相垂直,且分别为的中点.

(1)求证:

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形,,平面底面的中点,是棱上的点,

1求证:平面平面

2,求二面角的大小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ) 求函数的单调区间;

(Ⅱ) 时,求函数上最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抚州市某中学利用周末组织教职员工进行了一次秋季登军峰山健身的活动,有人参加,现将所有参加人员按年龄情况分为等七组,其频率分布直方图如下图所示.已知之间的参加者有4人.

1)求之间的参加者人数

2)组织者从之间的参加者(其中共有名女教师包括甲女,其余全为男教师)中随机选取名担任后勤保障工作,求在甲女必须入选的条件下,选出的女教师的人数为2人的概率.

3)已知之间各有名数学教师,现从这两个组中各选取人担任接待工作,设两组的选择互不影响,求两组选出的人中都至少有名数学教师的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:

微信控

非微信控

合计

男性

26

24

50

女性

30

20

50

合计

56

44

100

(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?

(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取的5人中“微信控”和“非微信控”的人数;

(3)从(2)中抽取的5位女性中,再随机抽取3人赠送礼品,试求抽取3人中恰有2人位“微信控”的概率.

参考公式: ,其中.

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点分别在轴和轴上运动,且,若动点满足.

1)求出动点P的轨迹对应曲线C的标准方程;

2)一条纵截距为2的直线与曲线C交于P,Q两点,若以PQ直径的圆恰过原点,求出直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是直角梯形,且

(1)证明:平面

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案