精英家教网 > 高中数学 > 题目详情

【题目】如图,已知AB是圆O的直径,C是圆O上一点,AC=BC,且PA⊥平面ABCEAC的中点,FPB的中点,PA=AB=2.求:

(Ⅰ)异面直线EFBC所成的角;

(Ⅱ)点A到平面PBC的距离.

【答案】(Ⅰ)60°(Ⅱ)

【解析】

(Ⅰ)连接OEOF,说明∠FEO是异面直线EFBC所成的角,解三角形即可。

(Ⅱ)证明BC⊥平面PAC,即可计算出SPBC=2,利用等体积法列方程即可得解。

解:(I)连接OEOF

OAB的中点,EAC的中点,

OEBC

∴∠FEO是异面直线EFBC所成的角,

OAB的中点,FPB的中点,

OFPA,又PA⊥平面ABC

OF⊥平面ABC

AB是圆O的直径,∴ACBC

AC=BCAB=2,∴BC=,∴OE=BC=

OF=PA=,∴tanFEO==

∴异面直线EFBC所成的角为60°

II)∵PA⊥平面ABCBC平面ABC

PABC

AB是圆O的直径,∴ACBC

PAAC=A

BC⊥平面PAC,∴BCPC

PC==2,∴SPBC==2

A到平面PBC的距离为h,则VA-PBC==

VA-PBC=VP-ABC===

h=,即A到平面PBC的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A.互相垂直的两条直线的直观图仍然是互相垂直的两条直线

B.梯形的直观图可能是平行四边形

C.矩形的直观图可能是梯形

D.正方形的直观图可能是平行四边形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆

(Ⅰ)若圆C与x轴相切,求圆C的方程;

(Ⅱ)已知,圆与x轴相交于两点(点在点的左侧).过点任作一条直线与圆相交于两点A,B.问:是否存在实数a,使得=?若存在,求出实数a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l方程为(m+2x-m+1y-3m-7=0mR

(Ⅰ)求证:直线l恒过定点P,并求出定点P的坐标;

(Ⅱ)若直线lx轴,y轴上的截距相等,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥S-ABC中,平面SAB⊥平面SBCABBCAS=AB,点EFG分别在棱SASBSC上,且平面EFG∥平面ABC,点ESA的中点.求证:

(Ⅰ)AF⊥平面SBC

(Ⅱ)SABC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为,则下列结论中不正确的是(  )

A. 若该大学某女生身高为170cm,则可断定其体重必为

B. 回归直线过样本点的中心

C. 若该大学某女生身高增加1cm,则其体重约增加

D. yx具有正的线性相关关系

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某印刷厂为了研究单册书籍的成本(单位:元)与印刷册数(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:

根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .

(1)为了评价两种模型的拟合效果,完成以下任务.

①完成下表(计算结果精确到0.1);

②分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好.

(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷,根据市场调查,新需求量为10千册,若印刷厂以每册5元的价格将书籍出售给订货商,求印刷厂二次印刷10千册获得的利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:A,1.5小时以上,B,1-1.5小时,C,0.5-1小时,D,0.5小时以下.图(1),(2)是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:

(1)本次一共调查了多少名学生.

(2)在图(1)中将对应的部分补充完整.

(3)若该校有3000名学生,你估计全校有多少名学生平均每天参加体育活动的时间在0.5小时以下?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一圆的圆心在直线上,且该圆经过两点.

1)求圆的标准方程;

2)若斜率为的直线与圆相交于两点,试求面积的最大值和此时直线的方程.

查看答案和解析>>

同步练习册答案