精英家教网 > 高中数学 > 题目详情

【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到/千米时,造成堵塞,此时车流速度为;当车流密度不超过/千米时,车流速度为千米/小时,研究表明:当时,车流速度是车流密度的一次函数.

1)当时,求函数的表达式;

2)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.

【答案】(1);(2) 车流密度/千米时,车流量可达到最大值4900/小时.

【解析】

(1)时,(千米/小时)

时,设

由题意知,解得,即

所以

(2)

①当时,单调递增,

②当时,,对称轴为

函数上单调递增,在上单调递减,

所以.

综上所述,当车流密度/千米时,车流量可达到最大值4900/小时.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(1)已知a,b,N都是正数,a≠1,b≠1,证明对数换底公式:logaN=

(2)写出对数换底公式的一个性质(不用证明),并举例应用这个性质

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=|x-a|-1,(a为常数).

1)若fx)在x[02]上的最大值为3,求实数a的值;

2)已知gx=xfx+a-m,若存在实数a∈(-12],使得函数gx)有三个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解我市参加2018年全国高中数学联赛的学生考试结果情况,从中选取60名同学将其成绩(百分制,均为正数)分成六组后,得到部分频率分布直方图(如图),观察图形,回答下列问题:

(1)求分数在内的频率,并补全这个频率分布直方图;

(2)根据频率分布直方图,估计本次考试成绩的众数、均值;

(3)根据评奖规则,排名靠前10%的同学可以获奖,请你估计获奖的同学至少需要所少分?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)求证:直线是曲线的切线;

(Ⅲ)写出的一个值,使得函数有三个不同零点(只需直接写出数值)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某上市公司股票在30天内每股的交易价格P(元)关于时间t(天)的函数关系为,该股票在30天内的日交易量Q(万股)关于时间t(天)的函数为一次函数,其图象过点和点.

1)求出日交易量Q(万股)与时间t(天)的一次函数关系式;

2)用y(万元)表示该股票日交易额,写出y关于t的函数关系式,并求在这30天内第几天日交易额最大,最大值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解所经销商品的使用情况,随机问卷50名使用者,然后根据这50名的问卷评分数据,统计得到如图所示的频率布直方图,其统计数据分组区间为[4050),[5060),[6070),[7080),[8090),[90100]

1)求频率分布直方图中a的值并估计这50名使用者问卷评分数据的中位数;

2)从评分在[4060)的问卷者中,随机抽取2人,求此2人评分都在[5060)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线,点 ,过点的直线交于 两点.

1)当轴垂直时,求直线的方程;

2)证明:

查看答案和解析>>

同步练习册答案