精英家教网 > 高中数学 > 题目详情
20.过抛物线y2=x的焦点F的直线l交抛物线于A,B两点,且直线l的倾斜角θ≥$\frac{π}{4}$,点A在x轴上方,则|FA|的取值范围是(  )
A.($\frac{1}{4}$,1+$\frac{\sqrt{2}}{2}$]B.($\frac{1}{4}$,1]C.($\frac{1}{4}$,+∞)D.($\frac{1}{2}$,+∞)

分析 通过抛物线方程可知焦点F($\frac{1}{4}$,0),一方面通过点A在x轴上方可知|FA|cosθ=xA-$\frac{1}{4}$,一方面利用抛物线定义可知|FA|=xA+$\frac{1}{4}$,联立消去xA可知|FA|=$\frac{\frac{1}{2}}{1-cosθ}$,利用θ∈[$\frac{π}{4}$,π)计算即得结论.

解答 解:∵抛物线方程为y2=x,
∴其焦点F($\frac{1}{4}$,0),
∵点A在x轴上方,
∴|FA|cosθ=xA-$\frac{1}{4}$,
由抛物线定义可知:|FA|=xA+$\frac{1}{4}$,
∴|FA|=$\frac{\frac{1}{2}}{1-cosθ}$,
∵θ∈[$\frac{π}{4}$,π),
∴cosθ∈(-1,$\frac{\sqrt{2}}{2}$],
∴|FA|=$\frac{\frac{1}{2}}{1-cosθ}$∈($\frac{1}{4}$,1+$\frac{\sqrt{2}}{2}$],
故选:A.

点评 本题考查抛物线的简单性质,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若a,b,c是非零实数,x=$\frac{a}{|a|}$+$\frac{b}{|b|}$+$\frac{c}{|c|}$,则由数x组成的集合可以表示为{3,-3,1,-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设动点(x,y)满足不等式组$\left\{\begin{array}{l}(x-y+1)(x+y-4)≥0\\ x≥3\end{array}\right.$,则x2+y2的最小值是(  )
A.$\sqrt{5}$B.$\sqrt{10}$C.$\frac{17}{2}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.圆x2+y2=4上恰有两个点到3x-4y+c=0的距离等于1,则c的取值范围为(-15,-5)∪(5,15).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.过点A(-$\sqrt{6}$,0)和抛物线x2=2py焦点F的直线与抛物线相交于点B,且$\overrightarrow{AF}$=2$\overrightarrow{FB}$.
(1)求抛物线的方程;
(2)M,N为抛物线上两点,O为原点,$\overrightarrow{OM}$•$\overrightarrow{ON}$=-1,过M,N分别作抛物线的两条切线,相交于P点,求△PMN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,F1、F2分别为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右两个焦点,A、B为两个顶点,该椭圆的离心率为$\frac{\sqrt{5}}{5}$,△ABO的面积为$\sqrt{5}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)作与AB平行的直线l交椭圆于P、Q两点,|PQ|=$\frac{9\sqrt{5}}{5}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=$\sqrt{4{-2}^{x}}$+ln(x-1)的定义域是(  )
A.(1,2]B.[1,2]C.(1,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设点P是△ABC内一点(不包括边界),且$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m.n∈R),则m2+n2-2m-2n+3的取值范围是$(\frac{3}{2},3)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知二次函数f(x)=x2+mx+1(m为整数)且关于x的方程f(x)-2=0在区间$(-3,\frac{1}{2})$内有两个不同的实根,
(1)求整数m的值;
(2)若x∈[1,t]时,总有f(x-4)≤4x,求t的最大值.

查看答案和解析>>

同步练习册答案