精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为为参数).是曲线上的动点,将线段点顺时针旋转得到线段,设点的轨迹为曲线.以坐标原点为极点,轴正半轴为极轴建立极坐标系.

(I)求曲线的极坐标方程;

(II)在(I)的条件下,若射线与曲线分别交于两点(除极点外),且有定点,求面积.

【答案】(I)的极坐标方程为的极坐标方程为;(II).

【解析】

(Ⅰ)由曲线的参数方程先化为普通方程,进而可化为极坐标方程;根据曲线的极坐标方程,求出的极坐标方程即可;

(II)先求出两点的极坐标,进而可求出,再由即可求出结果.

(Ⅰ)由题设,得的直角坐标方程为

的极坐标方程为,即

设点,则由已知得

代入的极坐标方程得

的极坐标方程为

(Ⅱ)将代入的极坐标方程得

又因为,所以

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的导函数为

(1)求函数的极大值;

(2)若函数有两个零点,求a的取值范围。

(3)在(2)的条件下,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线.

1)若过点作与抛物线相交的弦,要使其弦长为2的弦有几条?并说明理由.

2)试研究过点,且使弦长为2的弦有几条?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一种游戏画板,要求参与者用六种颜色给画板涂色,这六种颜色分别为红色、黄色1、黄色2、黄色3、金色1、金色2,其中黄色1、黄色2、黄色3是三种不同的颜色,金色1、金色2是两种不同的颜色,要求红色不在两端,黄色1、黄色2、黄色3有且仅有两种相邻,则不同的涂色方案有(  )

A.120种B.240种C.144种D.288种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】全民健身倡导全民做到每天参加一次以上的体育健身活动,旨在全面提高国民体质和健康水平.某市的体育部门对某小区的4000人进行了运动参与度统计评分(满分100分),得到了如下的频率分布直方图:

1)求这4000人的运动参与度的平均得分(同一组中数据用该组区间中点作代表);

2)由直方图可认为这4000人的运动参与度的得分服从正态分布,其中分别取平均得分和方差,那么选取的4000人中运动参与度得分超过84.81分(含84.81分)的人数估计有多少人?

3)如果用这4000人得分的情况来估计全市所有人的得分情况,现从全市随机抽取4人,记运动参与度的得分不超过84.81分的人数为,求.(精确到0.001

附:①;②,则;③.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了解中学生的课外阅读时间,决定在该中学的1200名男生和800名女生中按分层抽样的方法抽取20名学生,对他们的课外阅读时间进行问卷调查。现在按课外阅读时间的情况将学生分成三类:A类(不参加课外阅读),B类(参加课外阅读,但平均每周参加课外阅读的时间不超过3小时),C类(参加课外阅读,且平均每周参加课外阅读的时间超过3小时)。调查结果如下表:

A类

B类

C类

男生

x

5

3

女生

y

3

3

(I)求出表中x,y的值;

(II)根据表中的统计数据,完成下面的列联表,并判断是否有90%的把握认为“参加课外阅读与否”与性别有关;

男生

女生

总计

不参加课外阅读

参加课外阅读

总计

(III)从抽出的女生中再随机抽取3人进一步了解情况,记X为抽取的这3名女生中A类人数和C类人数差的绝对值,求X的数学期望。

附:K2=)

P(K2≥k0

0.10

0.05

0.01

k0

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班教室桌椅6740名同学空出最后一排的某两个位置其余人按身高和视力排座位班中有24人身高高18人视力好其中6名同学同时具备此两个条件已知若一名同学个子矮视力又不好则他必须坐在前三排若一名同学个子高视力又好则他必须坐在最后三排设排座位的方法是的质因数分解中的2的次数是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国全力抗击“新冠疫情”对全球做出了巨大贡献,广大中小学生在这场“战疫”中也通过各种方式作出了贡献.某校团委准备组织一次“网上战疫”的宣传活动,活动包含4项子活动.现随机抽取了5个班级中的25名同学进行关于活动方案的问卷调查,其中关于4项子活动的赞同情况统计如下:

班级代码

A

B

C

D

E

合计

4项子活动全部赞同的人数

3

4

8

3

2

20

4项子活动不全部赞同的人数

1

1

0

2

1

5

合计问卷调查人数

4

5

8

5

3

25

现欲针对4项子活动的活动内容作进一步采访调研,每项子活动采访1名学生.

1)若每项子活动都从这25名同学中随机选取1人采访,求4次采访中恰有1次采访的学生对“4项子活动不全部赞同”的概率;

2)若从A班和E班的被问卷调查者中各随机选取2人作为采访调研的对象,记选取的4人中“4项子活动全部赞同”的人数为X,求随机变量X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有编号依次为1,2,3,4,5,6的6名学生参加数学竞赛选拔,今有甲,乙,丙,丁四位老师在猜谁将获得第一名,甲猜不是3号就是5号;乙猜6号不可能;丙猜是1号,2号,4号中的一个;丁猜2号,3号,4号都不可能,若以上四位老师只有一位猜对,则猜对者是___________(填甲、乙、丙、丁)

查看答案和解析>>

同步练习册答案