精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的焦距为 ,且过点 ,设 上的两个动点,线段 的中点 的横坐标为 ,线段 的中垂线交椭圆 两点.

(1)求椭圆 的方程;

(2)设点纵坐标为m,求直线的方程,并求出 的取值范围.

【答案】(1);(2).

【解析】

(1)根据题意得到,.所以,于是 进而得到方程;(2)分情况讨论,当直线 垂直于 轴时,直线 方程为 ,此时 ,得 当直线 不垂直于 轴时,设直线 的斜率为 ,由线段 的中点 的横坐标为 ,得 得到直线 斜率为 联立直线和椭圆得二次方程,,根据点在椭圆内得到进而求得结果.

(1) 因为椭圆 的焦距为 ,且过点K ,所以,.所以,于是 ,所以椭圆 的方程为

(2) 由题意,当直线 垂直于 轴时,直线 方程为 ,此时 ,得 .当直线 不垂直于 轴时,设直线 的斜率为 ,由线段 的中点 的横坐标为 ,得

,故 .此时,直线 斜率为 的直线方程为 ,即

联立 消去 ,整理得

,所以,于是

由于 在椭圆的内部,故

所以

综上, 的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右顶点是双曲线的顶点,且椭圆的上顶点到双曲线的渐近线的距离为.

(1)求椭圆的方程;

(2)若直线相交于两点,与相交于两点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , a4+a7=20,对任意的k∈N都有Sk+1=3Sk+k2
(I) 求数列{an}的通项公式;
(Ⅱ)数列{bn}定义如下:2mbm(m∈N*)是使不等式an≥m成立所有n中的最小值,求{bn}的通项公式及{(﹣1)m1bm}的前2m项和T2m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣x+ +1(a∈R).
(1)讨论f(x)的单调性与极值点的个数;
(2)当a=0时,关于x的方程f(x)=m(m∈R)有2个不同的实数根x1 , x2 , 证明:x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2ωx(ω>0),将y=f(x)的图象向右平移 个单位长度后,若所得图象与原图象重合,则ω的最小值等于(
A.2
B.4
C.6
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在高二年级实行选课走班教学,学校为学生提供了多种课程,其中数学科提供5种不同层次的课程,分别称为数学1、数学2、数学3、数学4、数学5,每个学生只能从这5种数学课程中选择一种学习,该校高二年级1800名学生的数学选课人数统计如表:

课程

数学1

数学2

数学3

数学4

数学5

合计

选课人数

180

540

540

360

180

1800

为了了解数学成绩与学生选课情况之间的关系,用分层抽样的方法从这1800名学生中抽取了10人进行分析.
(1)从选出的10名学生中随机抽取3人,求这3人中至少有2人选择数学2的概率;
(2)从选出的10名学生中随机抽取3人,记这3人中选择数学2的人数为X,选择数学1的人数为Y,设随机变量ξ=X﹣Y,求随机变量ξ的分布列和数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的中位数是83,乙班学生成绩的平均数是86,则x+y的值为(

A.168
B.169
C.8
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (x>0).
(1)试判断函数f(x)在(0,+∞)上单调性并证明你的结论;
(2)若f(x)> 恒成立,求整数k的最大值;
(3)求证:(1+1×2)(1+2×3)…[1+n(n+1)]>e2n3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直角坐标平面内两点P,Q满足条件:①P、Q都在函数y=f(x)的图象上;②P、Q关于原点对称,则对称点(P,Q)是函数y=f(x)的一个“伙伴点组”(点对(P,Q)与(Q,P)看作同一个“伙伴点组”).则下列函数中,恰有两个“伙伴点组”的函数是(填空写所有正确选项的序号)
①y= ;②y= ;③y= ;④y=

查看答案和解析>>

同步练习册答案