精英家教网 > 高中数学 > 题目详情
(2013•福建)选修4-4:坐标系与参数方程
在直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知点A的极坐标为(
2
π
4
)
,直线l的极坐标方程为ρcos(θ-
π
4
)=a
,且点A在直线l上.
(Ⅰ)求a的值及直线l的直角坐标方程;
(Ⅱ)圆C的参数方程为
x=1+cosa
y=sina
(a为参数)
,试判断直线l与圆C的位置关系.
分析:(Ⅰ)根据点A在直线l上,将点的极坐标代入直线的极坐标方程即可得出a值,再利用极坐标转化成直角坐标的转换公式求出直线l的直角坐标方程;
(Ⅱ)欲判断直线l和圆C的位置关系,只需求圆心到直线的距离与半径进行比较即可,根据点到线的距离公式求出圆心到直线的距离然后与半径比较.
解答:解:(Ⅰ)点A(
2
π
4
)
在直线l上,得
2
cos(
π
4
-
π
4
)=a
,∴a=
2

故直线l的方程可化为:ρsinθ+ρcosθ=2,
得直线l的直角坐标方程为x+y-2=0;
(Ⅱ)消去参数α,得圆C的普通方程为(x-1)2+y2=1
圆心C到直线l的距离d=
1
2
=
2
2
<1,
所以直线l和⊙C相交.
点评:本题主要考查了简单曲线的极坐标方程,以及圆的参数方程和直线与圆的位置关系的判定,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•福建)选修4-5:不等式选讲
设不等式|x-2|<a(a∈N*)的解集为A,且
3
2
∈A,
1
2
∉A

(Ⅰ)求a的值
(Ⅱ)求函数f(x)=|x+a|+|x-2|的最小值.

查看答案和解析>>

同步练习册答案