精英家教网 > 高中数学 > 题目详情

【题目】编号分别为12名篮球运动员在某次篮球比赛中的得分记录如下:

运动员编号

得分

5

10

12

16

8

21

27

15

6

22

18

29

1)完成如下的频率分布表:

得分区间

频数

频率

3

合计

2)从得分在区间内的运动员中随机抽取2人,求这2人得分之和大于25的概率.

【答案】1)分布表见解析;(20.8.

【解析】

1)根据频数、频率的定义即可得到答案.

(2)首先利用列举法写出从内的运动员中随机抽取2人的全部基本事件,计算2人得分之和大于25的基本事件个数,再利用古典概型公式计算即可.

(1)频率分布表:

得分区间

频数

频率

3

5

4

合计

12

2)得分在区间的运动员编号为:,从中随机抽取2人,

所以的可能抽取结果:

10种,

设得分在区间内的运动员中随机抽取2人,求这 2人得分之和大于25的概率记为时间,事件包含个基本事件,

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某校高一、高二、高三的学生志愿者人数分别为180,180,90.现采用分层抽样的方法从中抽取5名学生去某敬老院参加献爱心活动,若再从这5人中抽取2人作为负责人,则事件“抽取的2名同学来自不同年级”的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为计算, 设计了如图所示的程序框图,则空白框中应填入( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率为,且经过点.

(1)求椭圆的方程;

(2)过点作直线与椭圆交于不同的两点,试问在轴上是否存在定点使得直线与直线恰关于轴对称?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次数学竞赛中,某些选手是朋友关系.记所有选手的集合为X,对集合X的子集Y,若可以将这些人两两分组,且每组中两名选手均是朋友关系,则称子集Y“可两两分组”.已知集合X不可两两分组,且对于任意选手,若A、B不是朋友关系,则可两两分组,且X中没有一个人与其他所有人均为朋友关系证明:对任意选手,若a、b为朋友关系,b、c为朋友关系,则a、c也为朋友关系

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现对某市工薪阶层关于楼市限购令的态度进行调查,随机抽调了50人,他们月收入的频数分布及对楼市限购令赞成人数如下表.

月收入(单位百元)

频数

5

10

15

10

5

5

赞成人数

4

8

12

5

2

1

(1)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为月收入以5500元为分界点对楼市限购令的态度有差异;

月收入不低于55百元的人数

月收入低于55百元的人数

合计

赞成

a=______________

c=______________

______________

不赞成

b=______________

d=______________

______________

合计

______________

______________

______________

(2)试求从年收入位于(单位:百元)的区间段的被调查者中随机抽取2人,恰有1位是赞成者的概率。

参考公式:,其中.

参考值表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】n种不同的颜色为下列两块广告牌着色,(如图甲、乙),要求在A,B,C,D四个区域中相邻(有公共边界)的区域不用同一颜色.

(1)若n=6,则为甲图着色时共有多少种不同的方法;

(2)若为乙图着色时共有120种不同方法,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为(t为参数),它与曲线C(y2)2x21交于AB两点.

(1)|AB|的长;

(2)O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线的参数方程为t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程是,曲线的极坐标方程是

1)求直线l和曲线的直角坐标方程,曲线的普通方程;

2)若直线l与曲线和曲线在第一象限的交点分别为PQ,求的值.

查看答案和解析>>

同步练习册答案