【题目】编号分别为的12名篮球运动员在某次篮球比赛中的得分记录如下:
运动员编号 | ||||||||||||
得分 | 5 | 10 | 12 | 16 | 8 | 21 | 27 | 15 | 6 | 22 | 18 | 29 |
(1)完成如下的频率分布表:
得分区间 | 频数 | 频率 |
3 | ||
合计 |
(2)从得分在区间内的运动员中随机抽取2人,求这2人得分之和大于25的概率.
科目:高中数学 来源: 题型:
【题目】已知某校高一、高二、高三的学生志愿者人数分别为180,180,90.现采用分层抽样的方法从中抽取5名学生去某敬老院参加献爱心活动,若再从这5人中抽取2人作为负责人,则事件“抽取的2名同学来自不同年级”的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆()的离心率为,且经过点.
(1)求椭圆的方程;
(2)过点作直线与椭圆交于不同的两点,,试问在轴上是否存在定点使得直线与直线恰关于轴对称?若存在,求出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次数学竞赛中,某些选手是朋友关系.记所有选手的集合为X,对集合X的子集Y,若可以将这些人两两分组,且每组中两名选手均是朋友关系,则称子集Y“可两两分组”.已知集合X不可两两分组,且对于任意选手,若A、B不是朋友关系,则可两两分组,且X中没有一个人与其他所有人均为朋友关系证明:对任意选手,若a、b为朋友关系,b、c为朋友关系,则a、c也为朋友关系
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.
月收入(单位百元) | ||||||
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 4 | 8 | 12 | 5 | 2 | 1 |
(1)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“月收入以5500元为分界点对“楼市限购令”的态度有差异;
月收入不低于55百元的人数 | 月收入低于55百元的人数 | 合计 | |
赞成 | a=______________ | c=______________ | ______________ |
不赞成 | b=______________ | d=______________ | ______________ |
合计 | ______________ | ______________ | ______________ |
(2)试求从年收入位于(单位:百元)的区间段的被调查者中随机抽取2人,恰有1位是赞成者的概率。
参考公式:,其中.
参考值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用n种不同的颜色为下列两块广告牌着色,(如图甲、乙),要求在A,B,C,D四个区域中相邻(有公共边界)的区域不用同一颜色.
(1)若n=6,则为甲图着色时共有多少种不同的方法;
(2)若为乙图着色时共有120种不同方法,求n.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程为(t为参数),它与曲线C:(y-2)2-x2=1交于A、B两点.
(1)求|AB|的长;
(2)以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线的参数方程为(t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程是,曲线的极坐标方程是.
(1)求直线l和曲线的直角坐标方程,曲线的普通方程;
(2)若直线l与曲线和曲线在第一象限的交点分别为P,Q,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com