精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在直三棱柱ABC﹣A1B1C1中,AB=AA1=2,∠ABC=90°,点E、F分别是棱AB、BB1的中点,当二面角C1﹣AA1﹣B为45o时,直线EF和BC1所成的角为(
A.45o
B.60o
C.90o
D.120o

【答案】B
【解析】解:如图,
∵三棱柱ABC﹣A1B1C1中是直三棱柱,∴AA1⊥平面A1B1C1
则A1C1⊥AA1 , A1B1⊥AA1 , ∴∠B1A1C1为二面角C1﹣AA1﹣B的平面角等于45o
∵∠A1B1C1=∠ABC=45°,且A1B1=AB=2,
∴B1C1=BC=2.
以B为原点,分别以BC,BA,BB1所在直线为x,y,z轴建立空间直角坐标系,
则B(0,0,0),E(0,1,0),C1(2,0,2),F(0,0,1).

∴cos< >=
的夹角为60°,即直线EF和BC1所成的角为60°.
故选:B.
【考点精析】利用异面直线及其所成的角对题目进行判断即可得到答案,需要熟知异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p:关于x的不等式ax>1,(a>0,a≠1)的解集是{x|x<0},命题q:函数y=lg(x2﹣x+a)的定义域为R,若p∨q为真p∧q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)= 是奇函数.
(1)求实数a,b的值;
(2)判断并证明f(x)在(﹣∞,+∞)上的单调性;
(3)若对任意实数t∈R,不等式f(kt2﹣kt)+f(2﹣kt)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P﹣ABCD中,底面ABCD是棱长为2的正方形,侧面PAD为正三角形,且面PAD⊥面ABCD,E、F分别为棱AB、PC的中点.
(1)求证:EF∥平面PAD;
(2)求三棱锥B﹣EFC的体积;
(3)求二面角P﹣EC﹣D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)上的动点到焦点距离的最小值为 -1.以原点为圆心、椭圆的短半轴长为半径的圆与直线x﹣y+ =0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆C相交于A,B两点,P为椭圆上一点,且满足 + =t (O为坐标原点).当|AB|= 时,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣2x﹣1=0,直线l:3x﹣4y+12=0,圆C上任意一点P到直线l的距离小于2的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣3)2+(y﹣4)2=4,直线l过定点A(1,0).
(1)若l与圆C相切,求l的方程;
(2)若l与圆C相交于P、Q两点,若|PQ|=2 ,求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的奇函数f(x)满足在(﹣∞,0)上为增函数且f(﹣1)=0,则不等式xf(x)>0的解集为(
A.(﹣∞,﹣1)∪(1,+∞)
B.(﹣1,0)∪(0,1)
C.(﹣1,0)∪(1,+∞)
D.(﹣∞,﹣1)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式lg ≥(x﹣1)lg3对任意x∈(﹣∞,1]恒成立,则a的取值范围是(
A.(﹣∞,0]
B.[1,+∞)
C.[0,+∞)
D.(﹣∞,1]

查看答案和解析>>

同步练习册答案