精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+2(a-1)x+2,
(1)若函数f(x)的值域为[1,+∞),求实数a的值;
(2)若函数f(x)的递增区间为[1,+∞),求实数a的值;
(3)若函数f(x)在区间[1,+∞)上是增函数,求实数a的取值范围.
分析:(1)利用二次函数的最值求法列出关于a的方程,即可求出a的值;
(2)利用二次函数的单调性在对称轴处分开,结合图形列出等式,即可求出a的值.
(3)由解析式先求出对称轴,再使对称轴在区间的右侧列出不等式,求出a的范围.
解答:解:(1)∵f(x)=x2+2(a-1)x+2=(x+a-1)2+2-(a-1)2≥2-(a-1)2
∵函数f(x)的值域为[1,+∞),
∴2-(a-1)2=1
∴a=0或a=2
(2)∵f(x)=x2+2(a-1)x+2对称轴为x=a-1,
∵若函数f(x)的递增区间为[1,+∞),
∴a-1=1,
∴a=2;
(3)由题意知,f(x)=x2+2(a-1)x+2对称轴为x=a-1,
∵函数f(x)在区间[1,+∞)上是增函数,
∴a-1≤1,解得a≤2.
点评:本题考查二次函数的单调性、二次函数最值的求法.二次函数的单调性,即由图象的开口方向和对称轴,判断函数的单调性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案