精英家教网 > 高中数学 > 题目详情
13.函数y=5sin(2x+θ)的图象关于y轴对称,则θ等(  )
A.2kπ+$\frac{π}{6}$(k∈Z)B.2kπ+π(k∈Z)C.kπ+$\frac{π}{2}$(k∈Z)D.kπ+π(k∈Z)

分析 根据函数y=f(x)为偶函数得到f(-x)=f(x),然后代入到解析式中根据两角和与差的正弦公式展开,最后根据三角函数的性质确定答案

解答 解:∵y=f(x)为偶函数,
∴5sin(2x+θ)=5sin(-2x+θ)
∴sin2xcosθ+cos2xsinθ=-sin2xcosθ+cos2xsinθ
∴sin2xcosθ=0,
∴cosθ=0,
∴θ=kπ+$\frac{π}{2}$(k∈Z)
故选:C.

点评 本题主要考查两角和与差的正弦公式和三角函数的性质--奇偶性.考查综合运用能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.指出当角x取何值时下列函数取得最大值和最小值.
(1)y=sin(3x-$\frac{π}{4}$);
(2)y=sin2x-cos2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标系中,有一条长度为2的线段AB,点A在y轴上运动,点B在x轴上运动,且保持线段长度不变,线段AB上的点P分线段AB所成的比为1:2,求点P满足的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.2014年小明以优异的成绩研究生毕业,并获得一份待遇优厚的工作.从2015年起,每年元月在银行存入5万元,打算连续存十年,银行年利率为r(按复利计算),到2025年元月取出的本利之和是$\frac{5(1{+r)}^{11}-5-5r}{r}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.书架上分别有5本不同的语文书、3本不同的数学书、4本不同的外语书.
(1)从书架上任取一本书有多少种取法?
(2)从书架上的三类书,每类各取一本书,有多少种取法?
(3)从书架上的三类书中任取两类,再在每类中各取一本书,有多少种取法?
(4)甲先取一本书,然后放回,乙再取一本书,有多少种取法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.有两个函数f(x)=asin(kx+$\frac{π}{3}$),g(x)=bcos(2kx-$\frac{π}{3}$)(k>0),它们的周期之和为$\frac{3π}{2}$,且f($\frac{π}{2}$)=g($\frac{π}{2}$),f($\frac{π}{4}$)=-$\sqrt{3}$•g($\frac{π}{4}$)+1,求k,a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.双曲线8mx2-my2=8的焦距为6,则实数m=(  )
A.±1B.-1C.1D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=3+log2x的图象与函数g(x)的图象关于y=x对称,则函数g(x)=2x-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{2-|x|,x≤2}\\{(x-2)^2,x>2}\end{array}\right.$,函数g(x)=2x-2则函数F(x)=f(x)-g(x)的零点个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案