精英家教网 > 高中数学 > 题目详情

【题目】设椭圆,其长轴长是短轴长的倍,过焦点且垂直于轴的直线被椭圆截得的弦长为.

1)求椭圆的方程;

2)点是椭圆上横坐标大于的动点,点轴上,圆内切于,试判断点在何位置时的长度最小,并证明你的判断.

【答案】1;(2)点的横坐标为时,的长度最小.见解析.

【解析】

1)根据条件列方程组,解得

2)先设,根据点斜式得直线的方程,再根据直线与圆相切列等量关系得,类似可得,转化为是方程的两个根,利用韦达定理解得,根据点满足椭圆方程,代入化简得,最后根据范围以及函数单调性求最值,即得结果.

(1)由已知

因为过焦点且垂直于轴的直线被椭圆截得的弦长为

解得,故所求椭圆方程为.

(2).

不妨设,则直线的方程为,即

又圆心到直线的距离为,即

化简得同理,

是方程的两个根,

,则

是椭圆上的点,∴.

,令,则

时,取到最小值,此时,即点的横坐标为时,的长度最小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在棱长为的正方体中,点分别为棱的中点,经过三点的平面为,平面被此正方体所截得截面图形的周长为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,点是椭圆的一个顶点,是等腰直角三角形.

1)求椭圆的方程;

2)过点分别作直线交椭圆于两点,设两直线的斜率分别为,且,证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线与椭圆有一个相同的焦点,过点且与轴不垂直的直线与抛物线交于两点,关于轴的对称点为.

(1)求抛物线的方程;

(2)试问直线是否过定点?若是,求出该定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设实数满足,则下列不等式中不成立的是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线与y轴垂直.

1)若,求的单调区间;

2)若成立,求a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图正方体的棱长为a,以下结论不正确的是(  )

A. 异面直线所成的角为

B. 直线垂直

C. 直线平行

D. 三棱锥的体积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形中,,点是边上一点,且,点的中点,将沿着折起,使点运动到点处,且满足.

1)证明:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆,左、右焦点分别是,为圆心,3为半径的圆与以为圆心,1为半径的圆相交于椭圆上的点

1)求椭圆的方程;

2)设椭圆,为椭圆上任意一点,过点的直线交椭圆两点,射线交椭圆于点

①求的值;

②令,的面积的最大值.

查看答案和解析>>

同步练习册答案