精英家教网 > 高中数学 > 题目详情
(2007•烟台三模)已知R上的函数f(x)=
1
3
ax3+
1
2
bx2+cx(a<b<c),在x=1时取得极值,且y=f(x)的图象上有一点处的切线斜率为-a.
(1)证明:0≤
b
a
<1;
(2)若f(x)在区间(s,t)上为增函数,证明:1≥t>s>-2且t-s<3;
(3)对任意满足以上条件的a,b,c,若不等式f′(x)+a<0对任意x≥k恒成立,求k的取值范围.
分析:(1)求导函数,利用函数在x=1时取得极值,a<b<c,结合关于x的方程f′(x)=-a有根,即可得出结论;
(2)程f′(x)=ax2+bx-(a+b)=0的两根为1和-
b
a
-1
,当且仅当-
b
a
-1<x<1
时,f′(x)>0,可得f(x)在[-
b
a
-1,1]
上为增函数,即可得出结论;
(3)若f′(x)+a=ax2+bx-b=a(x2+
b
a
x-
b
a
)<0对a、b恒成立,换元,变换主元,即可得出结论.
解答:(1)证明:求导函数,可得f′(x)=ax2+bx+c,
∵函数在x=1时取得极值,
∴a+b+c=0,
∵函数在x=1时取得极值,
∵a<b<c,
∴a<b<-(a+b),
∴-
1
2
b
a
<1
∵切线斜率为-a,则关于x的方程f′(x)=-a有根,
即ax2+bx-b=0有根,
∴b2+4ab=b(4a+b)≥0
b
a
≤-4
b
a
≥0

∵-
1
2
b
a
<1
∴0≤
b
a
<1;
(2)证明:方程f′(x)=ax2+bx-(a+b)=0
∴b2+4a(a+b)>0
∵f′(1)=0
∴方程f′(x)=ax2+bx-(a+b)=0的两根为1和-
b
a
-1

当且仅当-
b
a
-1<x<1
时,f′(x)>0
∴f(x)在[-
b
a
-1,1]
上为增函数,
∴1≥t>s≥-
b
a
-1
>-2且0<t-s≤
b
a
+2
<3;
(3)解:若f′(x)+a=ax2+bx-b=a(x2+
b
a
x-
b
a
)<0对a、b恒成立,
t=
b
a
∈[0,1),则g(t)=(x-1)t+x2>0对t∈[0,1)恒成立,
即g(1)≥0,g(0)>0恒成立 
解得x≤
-1-
5
2
或x≥
-1+
5
2

k≥
-1+
5
2
点评:本题考查导数知识的运用,考查函数的极值,考查恒成立问题,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2007•烟台三模)在等差数列{an}和等比数列{bn}的首项均为1,且公差d>0,公比q>1,则集合{n|an=bn}(n∈N+)中的元素最多有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•烟台三模)一个多面体的直观图(正视图、侧视图,俯视图)如图所示,M,N分别为A1B,B1C1的中点.
(1)求证:MN∥平面ACC1A1
(2)求证:MN⊥平面A1BC;
(3)求二面角A-A1B-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•烟台三模)复数Z1=a+2i,Z2=-2+i,如果|Z1|<|Z2|,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•烟台三模)对于线性相关系数r,以下说法正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•烟台三模)若f(x)=ax(a>0且a≠1)的反函数g(x)满足:g(
1
2
)<0,则函数f(x)的图象向左平移一个单位后的图象大致是下图中的(  )

查看答案和解析>>

同步练习册答案