精英家教网 > 高中数学 > 题目详情
5.已知点G为△ABC的重心,过G作直线与AB,AC两边分别交于M,N两点,且$\overrightarrow{AM}=x\overrightarrow{AB},\overrightarrow{AN}=y\overrightarrow{AC}$,x,y∈R+,则x+y的最小值为$\frac{4}{3}$.

分析 M,G,N三点共线,存在m,使$\overrightarrow{AG}$=m$\overrightarrow{AM}$+(1-m)$\overrightarrow{AN}$=mx$\overrightarrow{AB}$+(1-m)y$\overrightarrow{AC}$,又G是△ABC的重心,可得$\overrightarrow{AG}$=$\frac{1}{3}$$(\overrightarrow{AB}+\overrightarrow{AC})$,结合基本不等式的性质即可得出.

解答 解:∵M,G,N三点共线,
∴存在m,使$\overrightarrow{AG}$=m$\overrightarrow{AM}$+(1-m)$\overrightarrow{AN}$=mx$\overrightarrow{AB}$+(1-m)y$\overrightarrow{AC}$,
又∵G是△ABC的重心,
∴$\overrightarrow{AG}$=$\frac{1}{3}$$(\overrightarrow{AB}+\overrightarrow{AC})$=mx$\overrightarrow{AB}$+(1-m)y$\overrightarrow{AC}$,
∴mx=$\frac{1}{3}$,(1-m)y=$\frac{1}{3}$,
∴$\frac{1}{3x}+\frac{1}{3y}$=1,即$\frac{1}{x}+\frac{1}{y}$=3.
∴x+y=(x+y)$•\frac{1}{3}(\frac{1}{x}+\frac{1}{y})$=$\frac{1}{3}(2+\frac{y}{x}+\frac{x}{y})$≥$\frac{1}{3}(2+2\sqrt{\frac{x}{y}•\frac{y}{x}})$=$\frac{4}{3}$,当且仅当x=y=$\frac{2}{3}$时取等号.
故答案为:$\frac{4}{3}$.

点评 本题考查了、向量共线对立、三角形重心性质、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知线段PQ的端点Q的坐标为(-2,3),端点P在圆C:(x-8)2+(y-1)2=4上运动.
(Ⅰ)求线段PQ中点M的轨迹E的方程;
(Ⅱ)若一光线从点Q射出,经x轴反射后,与轨迹E相切,求反射光线所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a=$[{\frac{1}{2},2}]$,b=0.56,c=log0.56,则a,b,c的大小关系为(  )
A.c<b<aB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数$f(x)=x+\frac{a}{x}+lnx$在区间(1,2)上单调递增,则实数a的取值范围为(-∞,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=bsinx-ax2+2a-eb,g(x)=ex,其中a,b∈R,e=2.71828…为自然对数的底数.
(1)当a=0时,讨论函数F(x)=f(x)g(x)的单调性;
(2)求证:对任意a∈[$\frac{1}{2}$,1],存在b∈(-∞,1],使得f(x)在区间[0,+∞)上恒有f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,三棱柱ABC-A1B1C1中,BC⊥平面AA1C1C,BC=CA=AA1=2,∠CAA1=60°.
(1)求证:AC1⊥A1B;
(2)求直线A1B与平面BAC1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={1,3},集合B={3,4},则A∪B等于(  )
A.{1}B.{3}C.{1,3,3,4}D.{1,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}}$-(-9.6)0-(3$\frac{3}{8}$)${\;}^{\frac{2}{3}}}$+(1.5)2+($\sqrt{2}$×$\root{4}{3}$)4
(2)$\frac{{1g\sqrt{27}+1g8-1g\sqrt{1000}}}{{\frac{1}{2}1g0.3+1g2}}+{(\sqrt{5}-2)^0}+{0.027^{-\frac{1}{3}}}×{(-\frac{1}{3})^{-2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设P表示x+$\frac{4}{x+1}$>4的解集;Q表示不等式|x-1|+|x-2a|>1对任意x∈R恒成立的a的集合,求P∩Q.

查看答案和解析>>

同步练习册答案