精英家教网 > 高中数学 > 题目详情
对任意实数a、b,定义运算a*b=a2-ab-b2,则sin
π
12
*cos
π
12
=(  )
A.
3
-1
2
B.
2
3
-1
4
C.-
1+2
3
4
D.
3
4
由题意可得sin
π
12
*cos
π
12
=sin2
π
12
-sin
π
12
•cos
π
12
-cos2
π
12
 
=-cos
π
6
-
1
2
sin
π
6
=-
3
2
-
1
4
=-
1+2
3
4

故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ax+b(a,b为实常数)的零点与函数g(x)=2x2+4x-30的零点相同,数列{an},{bn}定义为:a1=
1
2
,2an+1=f(an)+15,bn=
1
2+an
(n∈N*).
(1)求实数a,b的值;
(2)若将数列{bn}的前n项和与数列{bn}的前n项积分别记为Sn,Tn证明:对任意正整数n,2n+1Tn+Sn为定值;
(3)证明:对任意正整数n,都有2[1-(
4
5
n]≤Sn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+ax+b(a,b为实常数),数列{an},{bn}定义为:a1=
1
2
,2an+1=f(an)+15,bn=
1
2+an
(n∈N*).已知不等式|f(x)≤2x2+4x-30|对任意实数x均成立.
(1)求实数a,b的值;
(2)若将数列{bn}的前n项和与乘积分别记为Sn和Tn,证明:对任意正整数n,2n+1Tn+Sn为定值;
(3)证明:对任意正整数n,都有2[1-(
4
5
n]≤Sn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2+ax+b(a,b为实常数)的零点与函数g(x)=2x2+4x-30的零点相同,数列{an},{bn}定义为:a1=数学公式,2an+1=f(an)+15,bn=数学公式(n∈N*).
(1)求实数a,b的值;
(2)若将数列{bn}的前n项和与数列{bn}的前n项积分别记为Sn,Tn证明:对任意正整数n,2n+1Tn+Sn为定值;
(3)证明:对任意正整数n,都有2[1-(数学公式n]≤Sn<2.

查看答案和解析>>

科目:高中数学 来源:2011年广东省华南师大附中高三临门一脚综合测试数学试卷(理科)(解析版) 题型:解答题

设函数f(x)=x2+ax+b(a,b为实常数),数列{an},{bn}定义为:a1=,2an+1=f(an)+15,bn=(n∈N*).已知不等式|f(x)≤2x2+4x-30|对任意实数x均成立.
(1)求实数a,b的值;
(2)若将数列{bn}的前n项和与乘积分别记为Sn和Tn,证明:对任意正整数n,2n+1Tn+Sn为定值;
(3)证明:对任意正整数n,都有2[1-(n]≤Sn<2.

查看答案和解析>>

科目:高中数学 来源:2009年上海市浦东新区建平中学高考数学三模试卷(理科)(解析版) 题型:解答题

已知点M(0,-1),直线l:y=mx+1与曲线C:ax2+y2=2(m,a∈R)交于A、B两点.
(1)当m=0时,有,求曲线C的方程;
(2)当实数a为何值时,对任意m∈R,都有为定值T?指出T的值;
(3)设动点P满足,当a=-2,m变化时,求点P的轨迹方程;
(4)是否存在常数M,使得对于任意的a∈(0,1),m∈R,都有恒成立?如果存在,求出的M得最小值;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案