精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
ax+b
1+x2
是定义域为(-1,1)上的奇函数,且f(1)=
1
2

(1)求f(x)的解析式;
(2)用定义证明:f(x)在(-1,1)上是增函数;
(3)若实数t满足f(2t-1)+f(t-1)<0,求实数t的范围.
分析:(1)由函数f(x)是定义在(-1,1)上的奇函数,所以f(0)=0,再据f(1)=
1
2
可求出a的值.
(2)利用增函数的定义可以证明,但要注意四步曲“一设,二作差,三判断符号,四下结论”.
(3)利用函数f(x)是奇函数及f(x)在(-1,1)上是增函数,可求出实数t的范围.
解答:解:(1)函数f(x)=
ax+b
1+x2
是定义域为(-1,1)上的奇函数,
∴f(0)=0,∴b=0;…(3分)
又f(1)=
1
2
,∴a=1;…(5分)
f(x)=
x
1+x2
…(5分)
(2)设-1<x1<x2<1,则x2-x1>0,
于是f(x2)-f(x1)=
x2
x22+1
-
x1
x12+1
=
(x2-x1)(1-x1x2)
(x12+1)(x22+1)

又因为-1<x1<x2<1,则1-x1x2>0,
x
2
1
+1>0
x
2
2
+1>0

∴f(x2)-f(x1)>0,即f(x2)>f(x1),
∴函数f(x)在(-1,1)上是增函数;
(3)f(2t-1)+f(t-1)<0,∴f(2t-1)<-f(t-1); …(6分)
又由已知函数f(x)是(-1,1)上的奇函数,∴f(-t)=-f(t)…(8分)
∴f(2t-1)<f(1-t)…(3分)
由(2)可知:f(x)是(-1,1)上的增函数,…(10分)
∴2t-1<1-t,t<
2
3
,又由-1<2t-1<1和-1<1-t<1得0<t<
2
3

综上得:0<t<
2
3
…(13分)
点评:本题考查了函数的奇偶性和单调性,充分理解以上性质是解决问题的关键.利用已证结论解决问题是常用的方法,注意体会和使用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案