精英家教网 > 高中数学 > 题目详情

【题目】已知: 是同一平面上的三个向量,其中 =(1,2).
(1)若| |=2 ,且 ,求 的坐标.
(2)若| |= ,且 +2 与2 垂直,求 的夹角θ

【答案】
(1)解:设

且| |=2

∴x=±2

=(2,4)或 =(﹣2,﹣4)


(2)解:∵( +2 )⊥(2

∴( +2 )(2 )=0

∴2 2+3 ﹣2 2=0

∴2| |2+3| || |cosθ﹣2| |2=0

∴2×5+3× × cosθ﹣2× =0

∴cosθ=﹣1

∴θ=π+2kπ

∵θ∈[0,π]

∴θ=π


【解析】(1)设出 的坐标,利用它与 平行以及它的模等于2 ,待定系数法求出 的坐标.(2)由 +2 与2 垂直,数量积等于0,求出夹角θ的余弦值,再利用夹角θ的范围,求出此角的大小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系, 曲线的参数方程为为参数) ;在以原点为极点, 轴的正半轴为极轴的极坐标系中, 曲线的极坐标参数方程为.

1)求曲线的极坐标方程和曲线的直角坐标方程;

2)若射线与曲线,的交点分别为 (异于原点). 当斜率, 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C方程为 (a>b>0),左、右焦点分别是F1 , F2 , 若椭圆C上的点P(1, )到F1 , F2的距离和等于4. (Ⅰ)写出椭圆C的方程和焦点坐标;
(Ⅱ)设点Q是椭圆C的动点,求线段F1Q中点T的轨迹方程;
(Ⅲ)直线l过定点M(0,2),且与椭圆C交于不同的两点A,B,若∠AOB为锐角(O为坐标原点),求直线l的斜率k0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程x2+y2﹣2x﹣4y+m=0.
(1)若此方程表示圆,求m的取值范围;
(2)若(1)中的圆与直线x+2y﹣4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;
(3)在(2)的条件下,求以MN为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在中, 的中点为,且,点的延长线上,且.固定边,在平面内移动顶点,使得圆与边,边的延长线相切,并始终与的延长线相切于点,记顶点的轨迹为曲线.以所在直线为轴, 为坐标原点如图所示建立平面直角坐标系.

(Ⅰ)求曲线的方程;

(Ⅱ)设动直线交曲线两点,且以为直径的圆经过点,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{an},{f(an)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(﹣∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)= ;④f(x)=ln|x|.则其中是“保等比数列函数”的f(x)的序号为(
A.①②
B.③④
C.①③
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线,半径为的圆相切,圆心轴上且在直线的上方.

(Ⅰ)求圆的标准方程;

(Ⅱ)过点的直线与圆交于两点(轴上方),问在轴正半轴上是否存在点,使得轴平分?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,在其定义域内既是奇函数又是减函数的是(
·(1)y=﹣|x|(x∈R)(2)y=﹣x3﹣x(x∈R)(3)y=( x(x∈R)(4)y=﹣x+
A.(2)
B.(1)(3)
C.(4)
D.(2)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小王创建了一个由他和甲、乙、丙共4人组成的微信群,并向该群发红包,每次发红包的个数为1个(小王自己不抢),假设甲、乙、丙3人每次抢得红包的概率相同.
(Ⅰ)若小王发2次红包,求甲恰有1次抢得红包的概率;
(Ⅱ)若小王发3次红包,其中第1,2次,每次发5元的红包,第3次发10元的红包,记乙抢得所有红包的钱数之和为X,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案