精英家教网 > 高中数学 > 题目详情
已知双曲线 -=1(a>0,b>0)的左、右焦点分别为F1、F2,点P在双曲线的右支上,且|PF1|=4|PF2|,则此双曲线的离心率e的最大值为(  )

A.

B.

C.2

D.

解析:方法一:由|PF1|-|PF2|=2a,|PF1|=4|PF2|得|PF2|=a,|PF1|=a.

由于|PF2|≥|F2A|,故a≥c-a,

即e=.

方法二:同一,由于|PF1|+|PF2|≥|F1F2|,?

a≥2c.∴e=.?

方法三:同一,设P(x,y),?

由于|PF2|=e(x-)=a

ex-a=aex=ax=,?

由x≥a,知e≤.

答案: B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线-=1的左焦点为F1,左,右顶点为A1,A2,P为双曲线上任意一点,则分别以线段PF1,A1A2为直径的两个圆的位置关系为

A.相交           B.相切           C.相离              D.以上情况都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线-=1上一点M到右准线的距离是10,F2是右焦点,N是MF2的中点,O为坐标原点,则|ON|等于(    )

A.2          B.2或7          C.7或12         D.2或12

查看答案和解析>>

科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练19练习卷(解析版) 题型:解答题

已知双曲线-=1(bN*)的左、右两个焦点为F1F2,P是双曲线上的一点,且满足|PF1||PF2|=|F1F2|2,|PF2|<4.

(1)b的值;

(2)抛物线y2=2px(p>0)的焦点与该双曲线的右顶点重合,斜率为1的直线经过右顶点,与该抛物线交于AB两点,求弦长|AB|.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练19练习卷(解析版) 题型:填空题

已知双曲线-=1的一个焦点与圆x2+y2-10x=0的圆心重合,且双曲线的离心率等于,则该双曲线的标准方程为    .

 

查看答案和解析>>

科目:高中数学 来源:2013届安徽省毫州市高二上学期质量检测文科数学 题型:填空题

已知双曲线-=1,椭圆的焦点恰好为双曲线的两个顶点,椭圆与双曲线的离心率互为倒数,则椭圆的方程为                .

 

 

查看答案和解析>>

同步练习册答案