精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}满足an+1=an﹣2anan+1 , an≠0且a1=1.
(1)求数列{an}的通项公式;
(2)令 ,求数列{bn}的前2n项和T2n

【答案】
(1)证明:∵an+1=an﹣2an+1an,an≠0且a1=1,

=2,

∴数列{ }是等差数列,首项为1,等差数列为2.

=1+2(n﹣1)=2n﹣1,

解得an=


(2)解: =(﹣1)n+1

=(﹣1)n+1 + ),

∴T2n= [(1+ )﹣( + )+…+( + )﹣( + )]

= (1﹣ )=


【解析】(1)由an+1=an﹣2an+1an , an≠0且a1=1,取倒数可得 =2,运用等差数列的通项公式即可得出.(2) =(﹣1)n+1 =(﹣1)n+1 + ),利用“裂项求和”即可得出.
【考点精析】通过灵活运用数列的前n项和和数列的通项公式,掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 首项为a1且1,an , Sn成等差数列.
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=(log2a2n+1)×(log2a2n+3),求数列 的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于x,y的不等式组 表示的平面区域内存在点P(x0 , y0),满足x0﹣2y0=2,求得m的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)满足下列条件:在定义域内存在x0 , 使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)具有性质M;反之,若x0不存在,则称函数f(x)不具有性质M.
(1)证明:函数f(x)=2x具有性质M,并求出对应的x0的值;
(2)已知函数 具有性质M,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位同学期末考试的语文、数学、英语、物理成绩如茎叶图所示,其中甲的一个数据记录模糊,无法辨认,用a来表示,已知两位同学期末考试四科的总分恰好相同,则甲同学四科成绩的中位数为( )

A.92
B.92.5
C.93
D.93.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解全校高中学生五一小长假参加实践活动的情况,抽查了100名学生,统计他们假期参加实践活动的时间,绘成的频率分布直方图如图所示.

(1)求这100名学生中参加实践活动时间在6~10小时内的人数;
(2)估计这100名学生参加实践活动时间的众数、中位数和平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个5次多项式为f(x)=3x5﹣2x4+5x3﹣2.5x2+1.5x﹣0.7,用秦九韶算法求出这个多项式当x=4时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex(x2+x+a)在(0,f(0))处的切线与直线2x﹣y﹣3=0平行,其中a∈R.
(1)求a的值;
(2)求函数f(x)在区间[﹣2,2]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,a,b,c分别是三个内角A,B,C的对边,若2asinB= b. (Ⅰ)求A;
(Ⅱ)若a= ,△ABC的面积为 ,求△ABC的周长.

查看答案和解析>>

同步练习册答案