精英家教网 > 高中数学 > 题目详情
已知四棱锥P-ABCD的底面是菱形.∠BCD=60°,AB=PB=PD=2,,AC与BD交于O点,E,H分别为PA,OC的中点.
(Ⅰ)求证:PC∥平面BDE;
(Ⅱ)求证:PH⊥平面ABCD;
(Ⅲ)求直线CE与平面PAB所成角的正弦值.

【答案】分析:(Ⅰ)因为E,O分别为PA,AC的中点,所以EO∥PC.由此能够证明PC∥平面BDE.
(Ⅱ)连接OP,因为PB=PD,所以OP⊥BD.在菱形ABCD中,BD⊥AC,又因为OP∩AC=O,所以BD⊥平面PAC.又PH?平面PAC,所以BD⊥PH.由此能够证明PH⊥平面ABCD.
(Ⅲ)过点O作OZ∥PH,所以OZ⊥平面ABCD.以O为原点,OA,OB,OZ所在直线为x,y,z轴,建立空间直角坐标系.得.设=(x,y,z)是平面PAB的一个法向量,由,得.由此能求出直线CE与平面PAB所成角的正弦值.
解答:(Ⅰ)证明:因为E,O分别为PA,AC的中点,
所以EO∥PC
又EO?平面BDE,PC?平面BDE.
所以PC∥平面BDE.
(Ⅱ)证明:连接OP,
因为PB=PD,
所以OP⊥BD.
在菱形ABCD中,BD⊥AC,
又因为OP∩AC=O,所以BD⊥平面PAC.
又PH?平面PAC,所以BD⊥PH.
在直角三角形POB中,OB=1,PB=2,所以
,H为OC的中点,所以PH⊥OC.
又因为BD∩OC=O
所以PH⊥平面ABCD.
(Ⅲ)解:过点O作OZ∥PH,所以OZ⊥平面ABCD.
如图,以O为原点,OA,OB,OZ所在直线为x,y,z轴,建立空间直角坐标系.
可得,,B(0,1,0),

所以
=(x,y,z)是平面PAB的一个法向量,
,即
令x=1,则..
设直线CE与平面PAB所成的角为θ,

所以直线CE与平面PAB所成角的正弦值为
点评:本题考查直线和平面平行、直线和平面垂直的证明方法和求直线与平面在所成角的正弦值.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知四棱锥P--ABC的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,e为PC的中点,F为AD的中点.
(Ⅰ)证明EF∥平面PAB;
(Ⅱ)证明EF⊥平面PBC;
(III)点M是四边形ABCD内的一动点,PM与平面ABCD所成的角始终为45°,求动直线PM所形成的曲面与平面ABCD、平面PAB、平面PAD所围成几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC,侧面PBC⊥底面ABCD,O是BC的中点.
(1)求证:PO⊥平面ABCD;
(2)求证:PA⊥BD
(3)若二面角D-PA-O的余弦值为
10
5
,求PB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,E为BC中点,AE与BD交于O点,AB=BC=2CD=2,BD⊥PE.
(1)求证:平面PAE⊥平面ABCD; 
(2)若直线PA与平面ABCD所成角的正切值为
5
2
,PO=2,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠DAB=∠ABC=90°,E是线段PC上一点,PC⊥平面BDE.
(Ⅰ)求证:BD⊥平面PAB.
(Ⅱ)若PA=4,AB=2,BC=1,求直线AC与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年山东省济宁一中高三(上)期末数学试卷(理科)(解析版) 题型:解答题

如图,已知四棱锥P--ABC的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,e为PC的中点,F为AD的中点.
(Ⅰ)证明EF∥平面PAB;
(Ⅱ)证明EF⊥平面PBC;
(III)点M是四边形ABCD内的一动点,PM与平面ABCD所成的角始终为45°,求动直线PM所形成的曲面与平面ABCD、平面PAB、平面PAD所围成几何体的体积.

查看答案和解析>>

同步练习册答案