精英家教网 > 高中数学 > 题目详情

【题目】如图已知椭圆=1(a>b>0),F1、F2分别为椭圆的左、右焦点,A为椭圆的上顶点直线AF2交椭圆于另一点B.

(1)若∠F1AB=90°求椭圆的离心率;

(2)若=2·求椭圆的方程.

【答案】(1)(2)=1

【解析】(1)若∠F1AB=90°则△AOF2为等腰直角三角形所以有OA=OF2即b=c.所以a=ce.

(2)由题知A(0b)F1(-c0)F2(c0)

其中c设B(xy).

=2得(c-b)=2(x-cy)

解得x=y=-即B.

将B点坐标代入=1=1=1解得a23c2.

又由·=(-c-b)·得b2-c2=1即有a22c2=1.②

由①②解得c2=1a2=3从而有b2=2.

所以椭圆方程为=1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】汽车的燃油效率是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )

A. 消耗1升汽油,乙车最多可行驶5千米

B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多

C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油

D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在[-1,1]上的奇函数,且,若任意的,当时,总有

1)判断函数[-1,1]上的单调性,并证明你的结论;

2)解不等式:

3)若对所有的恒成立,其中是常数),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为,且对任意,,且当.

1)证明:是奇函数;

2)证明:上是减函数;

3)求在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.

1)当0≤x≤200时,求函数vx)的表达式;

2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)fx=xvx)可以达到最大,并求出最大值.(精确到1/小时).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知抛物线Cy2=4x的焦点为F,直线l经过点F且与抛物线C相交于AB两点.

(1)若线段AB的中点在直线y=2上,求直线l的方程;

(2)若线段|AB|=20,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,椭圆上的点到左焦点的距离的最大值为.

(1)求椭圆的标准方程;

(2)已知直线与椭圆交于两点.在轴上是否存在点,使得,若存在,求出实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C,点x轴的正半轴上,过点M的直线l与抛线C相交于AB两点,O为坐标原点.

,且直线l的斜率为1,求证:以AB为直径的圆与抛物线C的准线相切;

是否存在定点M,使得不论直线l绕点M如何转动,恒为定值?若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆)的左、右焦点,过轴的垂线与交于

两点, 轴交于点 ,且 为坐标原点.

(1)求的方程;

(2)设为椭圆上任一异于顶点的点, 的上、下顶点,直线分别交轴于点.若直线与过点的圆切于点.试问: 是否为定值?若是,求出该定值;若不是,请说明理由。

查看答案和解析>>

同步练习册答案