精英家教网 > 高中数学 > 题目详情
已知点的坐标分别是,直线相交于点,且它们的斜率之积为
(1)求点轨迹的方程;
(2)若过点的直线与(1)中的轨迹交于不同的两点,试求面积的取值范围(为坐标原点).
(1);(2).

试题分析:(1)直接由斜率公式可求解;(2)直线方程与圆锥曲线方程联立方程组,利用弦长公式求出弦EF的长度,再由原点到直线EF的距离求出三角形高,求出三角形OEF面积的表达式,再利用基本不等式求最值.
试题解析:(1)设点的坐标为,∵,∴
整理,得,这就是动点的轨迹方程.
(2)由题意知直线的斜率存在,设的方程为 ①

将①代入得:,由,解得
,则 ②

.
,所以.
所以
所以.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知动圆经过点,且和直线相切,
(1)求动圆圆心的轨迹C的方程;
(2)已知曲线C上一点M,且5,求M点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线与双曲线有公共焦点,点是曲线在第一象限的交点,且
(Ⅰ)求双曲线的方程;
(Ⅱ)以双曲线的另一焦点为圆心的圆与直线相切,圆.过点作互相垂直且分别与圆、圆相交的直线,设被圆截得的弦长为被圆截得的弦长为,问:是否为定值?如果是,请求出这个定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在轴上,焦距为,且经过点,直线交椭圆于不同的两点A,B.
(1)求的取值范围;,
(2)若直线不经过点,求证:直线的斜率互为相反数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C长轴的两个顶点为A(-2,0),B(2,0),且其离心率为.

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若N是直线x=2上不同于点B的任意一点,直线AN与椭圆C交于点Q,设直线QB与以NB为直径的圆的一个交点为M(异于点B),求证:直线NM经过定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

极坐标系中椭圆C的方程为以极点为原点,极轴为轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度.
(Ⅰ)求该椭圆的直角标方程;若椭圆上任一点坐标为,求的取值范围;
(Ⅱ)若椭圆的两条弦交于点,且直线的倾斜角互补,
求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的离心率为
直线:y=x+2与原点为圆心,以椭圆C的短轴长为直
径的圆相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点的直线与椭圆交于两点.设直线的斜率,在轴上是否存在点,使得是以GH为底边的等腰三角形. 如果存在,求出实数的取值范围,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知△的两个顶点的坐标分别是,且所在直线的斜率之积等于
(Ⅰ)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线;
(Ⅱ)当时,过点的直线交曲线两点,设点关于轴的对称
点为(不重合) 试问:直线轴的交点是否是定点?若是,求出定点,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动圆过定点A(4,0), 且在y轴上截得的弦MN的长为8.
(Ⅰ) 求动圆圆心的轨迹C的方程;
(Ⅱ) 已知点B(-1,0), 设不垂直于x轴的直线l与轨迹C交于不同的两点P, Q, 若x轴是的角平分线, 证明直线l过定点.

查看答案和解析>>

同步练习册答案