Éè¸÷ÏÊÇÕýÊýµÄÊýÁÐ{an}Âú×㣺¶ÔÓÚÈÎÒâµÄ×ÔÈ»Êýn£¬¶¼ÓÐlog0.5a1+
log0.5a2
2
+
log0.5a3
3
+¡­+
log0.5an
n
=n(n¡ÊN*)
£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©ÊýÁÐ{bn}Âú×ãbn=(n+2)(
9
5
)nan
£¬ÊÔÇóÊýÁÐ{bn}µÄ×î´óÏ
£¨¢ó£©Áîc1=3£¬cn=3an-1£¨n¡Ý2£©£¬Sn=
n
i=1
ci
£¬ÊÇ·ñ´æÔÚ×ÔÈ»Êýc£¬k£¬Ê¹µÃ
Sk+1-c
Sk-c
£¾3
³ÉÁ¢£¿Ö¤Ã÷ÄãµÄÂ۶ϣ®
·ÖÎö£º£¨¢ñ£© Àà±ÈÓÚÒÑÖªSnÇóan£¬Ð´³ön+1ʱ±í´ïʽ£¬ÔÙÁ½Ê½Ïà¼õ£¬Ò׵ã®
£¨¢ò£©¿ÉÇóµÃbn=(n+2)(
9
10
)
n
£¬ÀûÓÃ×÷²î·¨Åж¨µ¥µ÷ÐÔ£¬Çó×î´óÏî
£¨¢ó£© cn=
3
2n-1
£¬ÔÙÇó³öSn´úÈë±í´ïʽ£¬½â¹ØÓÚc£¬kµÄ²»¶¨·½³Ì£¬Ì½ÌÖ½âµÄÇé¿ö£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒ⣬֪£ºlog0.5a1+
log0.5a2
2
+
log0.5a3
3
+¡­+
log0.5an
n
=n
£®           ¢Ù
µ±n¡Ý2ʱ£¬log0.5a1+
log0.5a2
2
+
log0.5a3
3
+¡­+
log0.5an-1
n-1
=n-1
£®        ¢Ú
ÓÉ¢Ù-¢Ú£¬Öª£ºµ±n¡Ý2ʱ£¬
log0.5an
n
=1
£¬¼´an=(
1
2
)n
£®    
µ±n=1ʱ£¬log0.5a1=1£¬a1=
1
2
ÊʺÏÉÏʽ£®
ËùÒÔ£¬ÊýÁÐ{an}µÄͨÏʽÊÇan=(
1
2
)n(n¡ÊN*)
£®         
£¨2£©ÓÉ£¨1£©Öª£ºbn=(n+2)(
9
10
)n
£®
ÓÉ
bn¡Ýbn+1
bn¡Ýbn-1
£¬¼´
(n+2)(
9
10
)n¡Ý(n+3)(
9
10
)n+1
(n+2)(
9
10
)n¡Ý(n+1)(
9
10
)n-1
£®        
½âµÃ£º7¡Ün¡Ü8
ÒòΪn¡ÊN*£¬ËùÒÔ£¬n=7»ò8
£¨3£©ÓÉÌâÒ⣬֪£ºµ±n¡Ý2ʱ£¬cn=3an-1=
3
2n-1
£®
ÓÖc1=3ÊʺÏÉÏʽ£¬¹ÊÊýÁÐ{cn}µÄͨÏʽΪcn=
3
2n-1
£®     
ËùÒÔ£¬Sn=
3[1-(
1
2
)
n
]
1-
1
2
=6[1-(
1
2
)
n
]
£®                     
¼ÙÉè´æÔÚ×ÔÈ»Êýc£¬k£¬Ê¹µÃ
Sk+1-c
Sk-c
£¾3
³ÉÁ¢£®¼´
6[1-(
1
2
)
k+1
]-c
6[1-(
1
2
)
k
]-c
£¾3
£®
ËùÒÔ£¬
(6-c)•2k-3
(6-c)•2k-6
£¾3

ËùÒÔ£¬
(6-c)•2k-3
(6-c)•2k-6
-3=
-2(6-c)•2k+15
(6-c)•2k-6
£¾0

¼´
(6-c)•2k-
15
2
(6-c)•2k-6
£¾0

ËùÒÔ£¬6£¼(6-c)•2k£¼
15
2

ÒòΪc£¬kΪ×ÔÈ»Êý£¬ËùÒÔ£¬£¨6-c£©•2k±ÈΪÕûÊý£¬
ËùÒÔ£¬£¨6-c£©•2k=7£¬ËùÒÔ£¬
2k=1
6-c=7
£¬¼´k=0£¬c=-1£¬²»ºÏÌâÒâ
ËùÒÔ£¬²»´æÔÚ×ÔÈ»Êýc£¬k£¬Ê¹µÃ
Sk+1-c
Sk-c
£¾3
³ÉÁ¢£®
µãÆÀ£º±¾Ì⿼²éµÈ±ÈÊýÁж¨Ò塢ͨÏʽ¡¢ÇóºÍ£¬ÊýÁеĵ¥µ÷ÐÔ¡¢²»¶¨·½³ÌµÄ½â£®¿¼²é·ÖÎö½â¾öÎÊÌâ¡¢¼ÆËã¡¢Âß¼­Ë¼Î¬£¬·ÖÀàÌÖÂÛµÄ˼Ïë·½·¨ºÍÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éè¸÷Ïî¾ùΪÕýÊýµÄÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÒÑÖª2a2=a1+a3£¬ÊýÁÐ{
Sn
}
Êǹ«²îΪdµÄµÈ²îÊýÁУ®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£¨ÓÃn£¬d±íʾ£©£»
£¨2£©ÉècΪʵÊý£¬¶ÔÂú×ãm+n=3kÇÒm¡ÙnµÄÈÎÒâÕýÕûÊým£¬n£¬k£¬²»µÈʽSm+Sn£¾cSk¶¼³ÉÁ¢£®ÇóÖ¤£ºcµÄ×î´óֵΪ
9
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éè¸÷Ïî¾ùΪÕýÊýµÄÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÒÑÖª2a2=a1+a3£¬ÊýÁÐ{
Sn
}
Êǹ«²îΪdµÄµÈ²îÊýÁУ®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£¨ÓÃn£¬d±íʾ£©£»
£¨¢ò£©ÉècΪʵÊý£¬¶ÔÂú×ãm+n=3kÇÒm¡ÙnµÄÈÎÒâÕýÕûÊým£¬n£¬k£¬²»µÈʽSm+Sn£¾cSk¶¼³ÉÁ¢£®ÇócµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•¹ãÖÝһģ£©Éè¸÷Ïî¾ùΪÕýÊýµÄÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÒÑÖªÊýÁÐ{
Sn
}
ÊÇÊ×ÏîΪ1£¬¹«²îΪ1µÄµÈ²îÊýÁУ®
£¨1£© ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Áîbn=
1
anS2n+1
+
an+1S2n-1
£¬Èô²»µÈʽ
n
i=1
bi
¡Ý
L
2n+1
+1
¶ÔÈÎÒân¡ÊN*¶¼³ÉÁ¢£¬ÇóʵÊýLµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2010-2011ѧÄê½­ËÕÊ¡ÎÞÎýÊн­ÒõÊÐÇàÑôÖÐѧ¸ß¶þ£¨Ï£©ÆÚÄ©ÊýѧÊÔ¾í£¨ÎÄ¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

Éè¸÷ÏÊÇÕýÊýµÄÊýÁÐ{an}Âú×㣺¶ÔÓÚÈÎÒâµÄ×ÔÈ»Êýn£¬¶¼ÓУ®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©ÊýÁÐ{bn}Âú×㣬ÊÔÇóÊýÁÐ{bn}µÄ×î´óÏ
£¨¢ó£©Áîc1=3£¬cn=3an-1£¨n¡Ý2£©£¬£¬ÊÇ·ñ´æÔÚ×ÔÈ»Êýc£¬k£¬Ê¹µÃ³ÉÁ¢£¿Ö¤Ã÷ÄãµÄÂ۶ϣ®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸