精英家教网 > 高中数学 > 题目详情
4.圆x2+y2=1与圆(x-2)2+(y-2)2=5的位置关系为(  )
A.内切B.相交C.外切D.相离

分析 根据两圆的圆心距大于半径之差,而小于半径之和,可得两圆相交.

解答 解:两圆x2+y2=1与圆(x-2)2+(y-2)2=5的圆心距为2$\sqrt{2}$,
它大于半径之差$\sqrt{5}$-1,而小于半径之和$\sqrt{5}$+1,
故两圆相交,
故选B.

点评 本题主要考查圆和圆的位置关系的判定,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.复数$z=\frac{i}{1-i}$的共轭复数的模为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=|x+1|-m|x-2|.
(Ⅰ)若m=1,求函数f(x)的值域;
(Ⅱ)若m=-1,求不等式f(x)>3x的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.从某市统考的学生数学考试卷中随机抽查100份数学试卷作为样本,分别统计出这些试卷总分,由总分得到如下的频率分布直方图.
(1)求这100份数学试卷的样本平均分$\overline x$和样本方差s2
(同一组中的数据用该组区间的中点值作代表)
(2)由直方图可以认为,这批学生的数学总分Z服从正态分布N(μ,σ2),其中μ近似为样本平均数$\overline x$,σ2近似为样本方差s2
①利用该正态分布,求P(81<z<119);
②记X表示2400名学生的数学总分位于区间(81,119)的人数,利用①的结果,求EX(用样本的分布区估计总体的分布).
附:$\sqrt{366}$≈19,$\sqrt{326}$≈18,若Z=~N(μ,2),则P(μ-σ2),则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知△ABC是等边三角形,D在BC的延长线上,且CD=2,${S_{△ABD}}=6\sqrt{3}$.
(Ⅰ)求AB的长;
(Ⅱ)求sin∠CAD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知p:-2≤x≤10,q:x2-2x+1-m2≤0(m>0),若¬p是¬q的必要非充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题中不正确的是(  )
A.如果平面α⊥平面 γ,平面β⊥平面 γ,α∩β=l,那么l⊥γ
B.如果平面α⊥平面 β,那么平面α内一定存在直线平行于平面β
C.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β
D.如果平面α⊥平面 β,过α内任意一点作交线的垂线,那么此垂线必垂直于β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短半轴长为1,离心率为$\frac{\sqrt{3}}{2}$
(1)求椭圆C的方程
(2)直线l与椭圆C有唯一公共点M,设直线l的斜率为k,M在椭圆C上移动时,作OH⊥l于H(O为坐标原点),当|OH|=$\frac{4}{5}$|OM|时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.抛物线 M:y2=2px(p>0)与椭圆 $N:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$有相同的焦点F,抛物线M与 椭圆N交于A,B,若F,A,B共线,则椭圆N的离心率等于$\sqrt{2}$-1.

查看答案和解析>>

同步练习册答案