精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)(x∈R)的图象上任一点(x0,y0)处的切线方程为y-y0=(x0-2)(x02-1)(x-x0),那么函数f(x)的单调递减区间是(  )
A.[-1,+∞)B.(-∞,2]C.(-∞,-1)和(1,2)D.[2,+∞)

分析 由切线方程y-y0=(x0-2)(x02-1)(x-x0),可知任一点的导数为f′(x)=(x-2)(x2-1),然后由f′(x)<0,可求单调递减区间.

解答 解:因为函数f(x),(x∈R)上任一点(x0y0)的切线方程为y-y0=(x0-2)(x02-1)(x-x0),
即函数在任一点(x0y0)的切线斜率为k=(x0-2)(x02-1),
即知任一点的导数为f′(x)=(x-2)(x2-1).
由f′(x)=(x-2)(x2-1)<0,得x<-1或1<x<2,
即函数f(x)的单调递减区间是(-∞,-1)和(1,2).
故选C.

点评 本题的考点是利用导数研究函数的单调性,先由切线方程得到切线斜率,进而得到函数的导数,然后解导数不等式,是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知a∈R,函数$f(x)=-\frac{1}{3}{x^3}+\frac{1}{2}a{x^2}+2ax({x∈R})$.
(1)当a=1时,求函数f(x)的单调递增区间;
(2)若函数f(x)在R上单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3-3x.
(Ⅰ)若曲线y=f(x)与直线y=m有且只有一个公共点,求m的取值范围;
(Ⅱ)过点P(2,-6)作曲线y=f(x)的切线,求此切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}满足a1=-40,且nan+1-(n+1)an=2n2+2n,则an取最小值时n的值为10或11.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.执行如图的程序框图,则输出的n为13.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合A={x|5x>1},集合$B=\left\{{x\left|{{{log}_{\frac{1}{3}}}({x+1})>-1}\right.}\right\}$.
(Ⅰ)求(∁RA)∩B;
(Ⅱ)若集合C={x|x<a},满足B∪C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知{an}是首项为1的等比数列,Sn是{an}的前n项和,且9S3=S6,则数列{anan+1}的前2017项和为(  )
A.22017-1B.22017-2C.$\frac{1}{3}({{4^{2017}}-1})$D.$\frac{2}{3}({{4^{2017}}-1})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设数列{an}满足a4=$\frac{1}{8}$,且对任意的正整数n,满足an+2-an≤3n,an+4-an≥10×3n,则a2016=$\frac{8{1}^{504}-80}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.?用辗转相除法求5280和12155的最大公约数,并用更相减损术检验.?先将412(5)化成十进制的数,然后用“除k取余法”再化成七进制的数.

查看答案和解析>>

同步练习册答案