精英家教网 > 高中数学 > 题目详情
14.二项式(x2+$\frac{2}{\sqrt{x}}$)5展开式中的常数项是80.

分析 利用通项公式即可得出.

解答 解:二项式(x2+$\frac{2}{\sqrt{x}}$)5展开式中的通项公式:Tr+1=${∁}_{5}^{r}$(x25-r$(\frac{2}{\sqrt{x}})^{r}$=2r${∁}_{5}^{r}$${x}^{10-\frac{5r}{2}}$,
令10-$\frac{5r}{2}$=0,解得r=4.
∴常数项=${2}^{4}{∁}_{5}^{4}$=80.
故答案为:80.

点评 本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积为(  )
A.20+3$\sqrt{2}$B.16+8$\sqrt{2}$C.18+3$\sqrt{5}$D.18+6$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.《九章算术》中有一个“两鼠穿墙”问题:今有垣(墙,读音)厚五尺,两鼠对穿,大鼠日穿(第一天挖)一尺,小鼠也日穿一尺.大鼠日自倍(以后每天加倍),小鼠日自半(以后每天减半).问何日(第几天)两鼠相逢(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{2}$+y2=1的左顶点为A,右焦点为F,O为原点,M,N是y轴上的两个动点,且MF⊥NF,直线AM和AN分别与椭圆C交于E,D两点.
(Ⅰ)求△MFN的面积的最小值;
(Ⅱ)证明;E,O,D三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义在R上的函数f(x)的图象关于y轴对称,且f(x)在[0,+∞)上单调递减,若关于x的不等式f(2mx-lnx-3)≥2f(3)-f(-2mx+lnx+3)在x∈[1,3]上恒成立,则实数m的取值范围为(  )
A.[$\frac{1}{2e}$,$\frac{ln6+6}{6}$]B.[$\frac{1}{e}$,$\frac{ln6+6}{3}$]C.[$\frac{1}{e}$,$\frac{ln3+6}{3}$]D.[$\frac{1}{2e}$,$\frac{ln3+6}{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数y=f(x)在R上单调递减,且f(m2)>f(m),则实数m的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.化简:
(1)sinαcosα(tanα+cotα);
(2)$\frac{{\sqrt{1-2sinθcosθ}}}{{sinθ-\sqrt{1-{{sin}^2}θ}}}$(其中$θ∈({0,\frac{π}{4}})$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的$\sqrt{2}$倍,P为侧棱SD上的点,且SD⊥PC.
(1)求二面角P-AC-D的大小;
(2)在侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE:EC的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知x1,x2,…,xn的平均数为10,标准差为2,则2x1-1,2x2-1,…,2xn-1的平均数和标准差分别为(  )
A.19和2B.19和3C.19和4D.19和8

查看答案和解析>>

同步练习册答案