精英家教网 > 高中数学 > 题目详情
15.已知抛物线C:y2=4x的焦点为F,直线y=x-2与C交于A,B两点,
(I)求线段AB的长;
(II)求三角形ABF的周长.

分析 (I)直线y=x-2与y2=4x联立,消y整理得:x2-8x+4=0,利用弦长公式求线段AB的长;
(II)由( I)xA+xB=8,则|AF|+|BF|=xA+xB+2═10,即可求三角形ABF的周长.

解答 解:( I)直线y=x-2与y2=4x联立,消y整理得:x2-8x+4=0,
∴|AB|=$\sqrt{2}•\sqrt{64-16}$=4$\sqrt{6}$;
( II)由( I)xA+xB=8,则|AF|+|BF|=xA+xB+2═10,所以周长为4$\sqrt{6}$+10.

点评 本题考查直线与抛物线的位置关系,考查韦达定理的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.如图所示,水平放置的三棱柱的侧棱长和底面边长均为1,且侧棱A A1⊥面A1 B1C1,正视图是边长为1的正方形,该三棱柱的侧视图面积为(  )
A.3B.$2\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.计算${1.1^0}+\root{3}{512}-{0.5^{-2}}+lg25+2lg2$=7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a,b,c是三条不同的直线,命题:“a∥b且a⊥c⇒b⊥c”是真命题,如果把a,b,c中的两条直线换成两个平面,在所得3个命题中,真命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.过点M(0,4)的直线l交抛物线x2=4y于AA,B两点,若△AOM与△BOM的面积比为2:1(O为坐标原点),则直线l的斜率为±$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.抛物线y2=8x的焦点为F,过F作直线l交抛物线于A、B两点,设$|{\overrightarrow{FA}}|=m,\overrightarrow{|{FB}|}=n$,则m•n的取值范围为(  )
A.(0,4]B.(0,16]C.[16,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=2x+x-4的零点个数是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在平面直角坐标系中,点P为椭圆$\frac{{x}^{2}}{3}$+y2=1上的一个动点,则点P到直线x-y+6=0的最大距离为4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.命题“?x0∈R,x${\;}_{0}^{2}$-2x0+1<0“的否定是?x∈R,x2-2x+1≥0.

查看答案和解析>>

同步练习册答案