分析 (1)运用代入法,可得曲线C1的直角坐标方程;由x=ρcosθ,y=ρsinθ,x2+y2=ρ2,两边平方即可得到曲线C2的直角坐标方程;
(2)求得曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}+\frac{1}{2}m}\\{y=1+\frac{\sqrt{3}}{2}m}\end{array}\right.$(m为参数),代入曲线C2的直角坐标方程,运用韦达定理,即可得到所求值.
解答 解:(1)曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}+t}\\{y=1+\sqrt{3}t}\end{array}\right.$(t为参数),
即为$\left\{\begin{array}{l}{t=x-\sqrt{3}}\\{\sqrt{3}t=y-1}\end{array}\right.$,两式相除,消去t,可得:
曲线C1的直角坐标方程为y-1=$\sqrt{3}$(x-$\sqrt{3}$),
即为y=$\sqrt{3}$x-2;
曲线C2的极坐标方程为ρ=$\frac{2}{\sqrt{1+3si{n}^{2}θ}}$.
即为ρ2+3ρ2sin2θ=4,
由x=ρcosθ,y=ρsinθ,x2+y2=ρ2,
可得曲线C2的直角坐标方程为x2+y2+3y2=4,
即为$\frac{{x}^{2}}{4}$+y2=1;
(2)设曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}+\frac{1}{2}m}\\{y=1+\frac{\sqrt{3}}{2}m}\end{array}\right.$(m为参数),
代入曲线C2的直角坐标方程$\frac{{x}^{2}}{4}$+y2=1,可得:
($\sqrt{3}$+$\frac{1}{2}$m)2+4(1+$\frac{\sqrt{3}}{2}$m)2=4,
化为$\frac{13}{4}$m2+5$\sqrt{3}$m+3=0,
即有|MA|•|MB|=|m1|•|m2|=|m1•m2|=$\frac{12}{13}$.
点评 本题考查极坐标方程和直角坐标方程的互化,以及参数方程和直角坐标方程的互化,注意运用代入法和极坐标和直角坐标的关系,同时考查直线参数方程的运用,注意参数的几何意义,属于中档题和易错题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2016×2015×2014}$ | B. | $\frac{1}{2016×2017}$ | C. | $\frac{1}{2016×2015×1006}$ | D. | $\frac{1}{2016×2015×1007}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com