精英家教网 > 高中数学 > 题目详情
4.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}+t}\\{y=1+\sqrt{3}t}\end{array}\right.$(t为参数),以原点为极点,以x轴为正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ=$\frac{2}{\sqrt{1+3si{n}^{2}θ}}$.
(1)求曲线C1与曲线C2的直角坐标方程;
(2)设点M($\sqrt{3}$,1),曲线C1与曲线C2交于A,B两点,求|MA|•|MB|的值.

分析 (1)运用代入法,可得曲线C1的直角坐标方程;由x=ρcosθ,y=ρsinθ,x2+y22,两边平方即可得到曲线C2的直角坐标方程;
(2)求得曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}+\frac{1}{2}m}\\{y=1+\frac{\sqrt{3}}{2}m}\end{array}\right.$(m为参数),代入曲线C2的直角坐标方程,运用韦达定理,即可得到所求值.

解答 解:(1)曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}+t}\\{y=1+\sqrt{3}t}\end{array}\right.$(t为参数),
即为$\left\{\begin{array}{l}{t=x-\sqrt{3}}\\{\sqrt{3}t=y-1}\end{array}\right.$,两式相除,消去t,可得:
曲线C1的直角坐标方程为y-1=$\sqrt{3}$(x-$\sqrt{3}$),
即为y=$\sqrt{3}$x-2;
曲线C2的极坐标方程为ρ=$\frac{2}{\sqrt{1+3si{n}^{2}θ}}$.
即为ρ2+3ρ2sin2θ=4,
由x=ρcosθ,y=ρsinθ,x2+y22
可得曲线C2的直角坐标方程为x2+y2+3y2=4,
即为$\frac{{x}^{2}}{4}$+y2=1;
(2)设曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}+\frac{1}{2}m}\\{y=1+\frac{\sqrt{3}}{2}m}\end{array}\right.$(m为参数),
代入曲线C2的直角坐标方程$\frac{{x}^{2}}{4}$+y2=1,可得:
($\sqrt{3}$+$\frac{1}{2}$m)2+4(1+$\frac{\sqrt{3}}{2}$m)2=4,
化为$\frac{13}{4}$m2+5$\sqrt{3}$m+3=0,
即有|MA|•|MB|=|m1|•|m2|=|m1•m2|=$\frac{12}{13}$.

点评 本题考查极坐标方程和直角坐标方程的互化,以及参数方程和直角坐标方程的互化,注意运用代入法和极坐标和直角坐标的关系,同时考查直线参数方程的运用,注意参数的几何意义,属于中档题和易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.有以下程序:
  
根据以上程序,若函数g(x)=f(x)-m在R上有且只有两个零点,则实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.数列{an}的前n项和是Sn,若数列{an}的各项按如下规则排列:$\frac{1}{2},\frac{1}{3},\frac{2}{3},\frac{1}{4},\frac{2}{4},\frac{3}{4},\frac{1}{5},\frac{2}{5},\frac{3}{5},\frac{4}{5},…,\frac{1}{n},\frac{2}{n},…,\frac{n-1}{n}$,…若存在正整数k,使Sk<100,Sk+1≥100,则ak=$\frac{14}{21}$,k=203.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知:sin230°+sin290°+sin2150°=$\frac{3}{2}$
sin25°+sin265°+sin2125°=$\frac{3}{2}$
sin2(-10°)+sin250°+sin2110°=$\frac{3}{2}$
通过观察上述等式的规律,请你写出一般性的命题,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知直三棱柱ABC-A1B1C1的各棱长均为a,点P是侧棱AA1的中点,BC1∩B1C=S
(1)作出平面PBC1与平面ABC的公共直线;(不写做法,保留作图痕迹),并证明:PS∥面ABC;
(2)求四棱锥P-BB1C1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示的三角形数阵叫“牛顿调和三角形”,它们是由整数的倒数组成的,第n行有n个数且两端的数均为$\frac{1}{n}$(n≥2),每个数是它下一行左右相邻两数的和,如$\frac{1}{1}=\frac{1}{2}+\frac{1}{2}$,$\frac{1}{2}=\frac{1}{3}+\frac{1}{6}$,$\frac{1}{3}=\frac{1}{4}+\frac{1}{12}$,…,
则第2016行第3个数(从左往右数)为(  )
A.$\frac{1}{2016×2015×2014}$B.$\frac{1}{2016×2017}$C.$\frac{1}{2016×2015×1006}$D.$\frac{1}{2016×2015×1007}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,内角A,B,C的对边分别为a,b,c,且a>c,已知$\overrightarrow{BA}•\overrightarrow{BC}$=-3,cosB=-$\frac{3}{7}$,b=2$\sqrt{14}$,求:
(1)a和c的值;
(2)sin(A-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.图中的线段按下列规则排列,试猜想第9个图形中的线段条数为(  )
A.510B.512C.1021D.1022

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图:在三棱柱ABC-A1B1C1中,∠A1B1C1=90°,A1B1=B1C1=AA1=2,且C在底面A1B1C1上的射影A1C1边的中点,D为AC的中点,点E在CC1上,且$\overrightarrow{{C}_{1}E}$=λ$\overrightarrow{{C}_{1}C}$(0<λ<1)
(1)求证:BD丄平面ACC1A1
(2)当λ为何值时,二面角B1-A1E-C1的余弦值为$\frac{\sqrt{11}}{11}$.

查看答案和解析>>

同步练习册答案