精英家教网 > 高中数学 > 题目详情
7.将长AB=4π,宽BC=π的矩形ABCD,卷成圆柱的侧面,则所得圆柱的体积最大值为4π2

分析 分类讨论不同情况下,圆柱的体积,综合讨论结果,可得答案.

解答 解:若以AB=4π为圆柱的高,则圆柱的底面周长为BC=π,
则圆柱的底面半径r=$\frac{1}{2}$,
此时圆柱的体积V=πr2h=π2
若以BC=π为圆柱的高,则圆柱的底面周长为AB=4π,
则圆柱的底面半径r=2,
此时圆柱的体积V=πr2h=4π2
故圆柱体积的最大值为4π2
故答案为:4π2

点评 本题考查的知识点是旋转体,圆柱的体积公式,分类讨论思想,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知定义在实数集R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=2x+1
(1)求f(x)与g(x)的解析式;
(2)若定义在实数集R上的以2为最小正周期的周期函数φ(x),当-1≤x≤1时,φ(x)=f(x),试求φ(x)在闭区间[2015,2016]上的表达式,并证明φ(x)在闭区间[2015,2016]上单调递减;
(3)设h(x)=x2+2mx+m2-m+1(其中m为常数),若h(g(x))≥m2-m-1对于x∈[1,2]恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一个空间几何体的三视图如图所示,其正视图、侧视  图、俯视图均为等腰直角三角形,且直角边长都为1,则它的外接球的表面积是(  )
A.B.πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若直线l⊥平面α,直线a?α,则l与a的位置关系是垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若直线方程$x+\sqrt{3}y=0$,那么直线的倾斜角是(  )
A.30°B.150°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若f(x)=ex+lnx,则此函数的图象在点(1,f(1))处的切线方程为(e+1)x-y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如果复数z=$\frac{6-bi}{1+2i}$(其中i为虚数单位,b为实数)的实部和虚部互为相反数.
①求z.
②求|z|.
③负数z在复平面内对应的点在第几象限.
④若z(m+i)是纯虚数,求m的值.
⑤求($\frac{z}{\overline{z}}$)2016

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知全集U=R,集合$A=\left\{{\left.{x\left|{\frac{x+1}{x-2}≤0}\right.}\right\}}\right.$,则集合∁UA={x|x<-1或x≥2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若f(x)=ln($\sqrt{{4x}^{2}+1}$-2x)-1.则f(x)+f(-x)=(  )
A.-2B.0C.1

查看答案和解析>>

同步练习册答案