10£®ÒÑÖªµãF£¨1£¬0£©£¬¶¯µãM£¬N·Ö±ðÔÚxÖᣬyÖáÉÏÔ˶¯£¬MN¡ÍNF£¬QΪƽÃæÉÏÒ»µã£¬$\overrightarrow{NQ}+\overrightarrow{NF}=\overrightarrow 0$£¬¹ýµãQ×÷QPƽÐÐÓÚxÖá½»MNµÄÑÓ³¤ÏßÓÚµãP£®
£¨¢ñ£©ÇóµãPµÄ¹ì¼£ÇúÏßEµÄ·½³Ì£»
£¨¢ò£©¹ýQµã×÷xÖáµÄ´¹Ïßl£¬Æ½ÐÐÓÚxÖáµÄÁ½ÌõÖ±Ïßl1£¬l2·Ö±ð½»ÇúÏßEÓÚA£¬BÁ½µã£¨Ö±ÏßAB²»¹ýF£©£¬½»lÓÚC£¬DÁ½µã£®ÈôÏ߶ÎABÖеãµÄ¹ì¼£·½³ÌΪy2=2x-4£¬Çó¡÷CDFÓë¡÷ABFµÄÃæ»ýÖ®±È£®

·ÖÎö £¨¢ñ£©Çó³ö$\overrightarrow{MN}=£¨{x£¬\frac{y}{2}}£©$£¬$\overrightarrow{NF}=£¨{1£¬-\frac{y}{2}}£©$£¬ÀûÓÃ$\overrightarrow{MN}•\overrightarrow{NF}=0$£¬¿ÉµÃÇóµãPµÄ¹ì¼£ÇúÏßEµÄ·½³Ì£»
£¨¢ò£©·ÖÀàÌÖÂÛ£¬Çó³öÏàÓ¦Ãæ»ý£¬¼´¿ÉÇó¡÷CDFÓë¡÷ABFµÄÃæ»ýÖ®±È£®

½â´ð ½â£º£¨¢ñ£©ÉèP£¨x£¬y£©£¬ÓÉNΪQ£¬FµÄÖеã¿ÉµÃNΪP£¬MµÄÖе㣬ÔòM£¬N·Ö±ðΪM£¨-x£¬0£©£¬$N£¨{0£¬\frac{y}{2}}£©$$\overrightarrow{MN}=£¨{x£¬\frac{y}{2}}£©$£¬$\overrightarrow{NF}=£¨{1£¬-\frac{y}{2}}£©$£¬$\overrightarrow{MN}•\overrightarrow{NF}=0$£¬¿ÉµÃµãPµÄ¹ì¼£·½³ÌΪ£ºy2=4x
£¨2£©ÉèÖ±ÏßABÓëxÖáµÄ½»µãG£¨a£¬0£©£¬Éè$A£¨{\frac{y_1^2}{4}£¬{y_1}}£©$£¬$B£¨{\frac{y_2^2}{4}£¬{y_2}}£©$
ÉèA£¬BÖеãΪM£¨x£¬y£©£¬
µ±ABÓëxÖá²»´¹Ö±Ê±£¬ÓÉkAB=kMG¿ÉµÃ$\frac{4}{{{y_1}+{y_2}}}=\frac{y}{x-a}$
¶ø$\frac{{{y_1}+{y_2}}}{2}=y$£¬Ôò$\frac{4}{2y}=\frac{y}{x-a}$¼´y2=2£¨x-a£©£¬¼´a=2
µ±ABÓëxÖᴹֱʱ£¬A£¬BÖеãMÓëG£¨a£¬0£©Öغϣ¬ÊʺϷ½³Ì£®
ÓÉNΪQ£¬FµÄÖе㣬¿ÉÖª¹ýQµã×÷xÖáµÄ´¹Ïßl¼´Îªy2=4xµÄ×¼Ïߣ¬${S_{¡÷CDF}}=\frac{1}{2}|{{y_1}-{y_2}}|•2$£¬${S_{¡÷ABF}}=\frac{1}{2}|{{y_1}-{y_2}}|•|{a-1}|$=$\frac{1}{2}|{{y_1}-{y_2}}|•1$£¬
¡à¡÷CDFÓë¡÷ABFµÄÃæ»ýÖ®±ÈΪ2£®

µãÆÀ ±¾Ì⿼²é¹ì¼£·½³Ì£¬¿¼²éÏòÁ¿ÖªÊ¶µÄÔËÓ㬿¼²é·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ÔÚÖ±ÈýÀâÖùABC-A1B1C1ÖУ¬AB=AC=AA1=4£¬DΪBB1ÉÏÒ»µã£¬EΪACÉÏÒ»µã£¬ÇÒB1D=CE=1£¬BE=$\sqrt{7}$£®
£¨¢ñ£©ÇóÖ¤£ºBE¡ÍAC1£»
£¨¢ò£©ÇóÖ¤£ºBE¡ÎƽÃæAC1D£»
£¨¢ó£©ÇóËÄÀâ׶A-BCC1B1µÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑ֪ȫ¼¯U=R£¬A={x|x2-4x+3¡Ü0}£¬B={x|log3x¡Ý1}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®{3}B£®{x|$\frac{1}{2}$£¼x¡Ü1}C£®{x|x£¼1}D£®{x|0£¼x£¼1}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýy=lnx-mx£¨m¡ÊR£©
£¨1£©Èôº¯Êýy=f£¨x£©¹ýµãP£¨1£¬-1£©£¬ÇóÇúÏßy=f£¨x£©ÔÚµãP´¦µÄÇÐÏß·½³Ì£»
£¨2£©Çóº¯Êýf£¨x£©ÔÚÇø¼ä[1£¬e]ÉϵÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®É躯Êý$f£¨x£©=\left\{\begin{array}{l}{x^2}+x£¬x£¼0\\-{x^2}£¬x¡Ý0\end{array}\right.$£¬g£¨x£©Îª¶¨ÒåÔÚRÉϵÄÆ溯Êý£¬ÇÒµ±x£¼0ʱ£¬g£¨x£©=x2-2x-5£¬Èôf£¨g£¨a£©£©¡Ü2£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$£¨{-¡Þ£¬-1}]¡È[{0£¬2\sqrt{2}-1}]$B£®$[{-1£¬2\sqrt{2}-1}]$C£®£¨-¡Þ£¬-1]¡È£¨0£¬3]D£®[-1£¬3]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªµãA£¨4£¬4£©ÔÚÅ×ÎïÏßy2=2px £¨p£¾0£©ÉÏ£¬¸ÃÅ×ÎïÏߵĽ¹µãΪF£¬¹ýµãA×÷¸ÃÅ×ÎïÏß×¼ÏߵĴ¹Ïߣ¬´¹×ãΪE£¬Ôò¡ÏEAFµÄƽ·ÖÏßËùÔÚµÄÖ±Ïß·½³ÌΪ£¨¡¡¡¡£©
A£®2x+y-12=0B£®x+2y-12=0C£®2x-y-4=0D£®x-2y+4=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®¸´Êýz=$\frac{£¨1-i£©^{2}}{1+i}$µÄ¹²éÊý$\overline{z}$ÔÚ¸´Æ½ÃæÄÚ¶ÔÓ¦µÄµãλÓÚ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èô$\left\{\begin{array}{l}{x+4y-8¡Ü0}\\{x¡Ý0}\\{y£¾0}\end{array}\right.$ÔÚÇøÓòÄÚÈÎÈ¡Ò»µãP£¬ÔòµãPÂäÔÚÔ²x2+y2=2ÄڵĸÅÂÊΪ$\frac{¦Ð}{16}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÖ±Ïßl£ºy=k£¨x-1£©½»xÖáÓÚµãA£¬½»yÖáÓÚµãB£¬½»Ö±Ïßy=xÓÚµãC£¬
£¨1£©Èôk=3£¬Çó$\frac{{|{BC}|}}{{|{AC}|}}$µÄÖµ£»
£¨2£©Èô|BC|=2|AC|£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸