精英家教网 > 高中数学 > 题目详情

【题目】某校在高一部分学生中调查男女同学对某项体育运动的喜好情况,其二维条形图如图(黑色代表喜好,白色代表不喜好).

1)写出列联表;

2)能否有99%的把握认为喜好这项体育运动与性别有关;

3)在这次调查中从喜好这项体育活动的一名男生和两名女生中任选两人进行专业培训,求恰是一男一女的概率.

附:

0.25

0.010

0.005

0.001

5.024

6.635

7.879

10.83

【答案】1)见解析(2)没有99%把握认为喜好这项体育运动与性别有关(3

【解析】

1)观察二维条形图得到所需数据,由此写出列联表即可;

2)根据列联表中的数据计算,对照数表即可得出结论;

3)通过列举法分别写出任选两人的情况和选一名男生和一名女生的情况,再由古典概型的概率公式计算即可.

1)观察二维条形图可得,

男生总共45人,其中喜好这项运动的有15人,不喜好的有30人;

女生总共45人,其中喜好这项运动的有5人,不喜好的有40.

由此写出列联表如下:

列联表:单位;人

喜欢

不喜欢

总计

15

30

45

5

40

45

总计

20

70

90

2.

所以没有99%把握认为喜好这项体育运动与性别有关.

3)设喜好这项体育活动的一名男生和两名女生记为.

任选两人的情况为:

选一名男生和一名女生的情况为:

所以

即恰是一男一女的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,点为棱的中点.

1)证明:

2)求直线与平面所成角的正弦值;

3)若为棱上一点,满足,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:

组别

2

3

5

15

18

12

0

5

10

10

7

13

(1)若规定问卷得分不低于70分的市民称为“环保关注者”,请完成答题卡中的列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否为“环保关注者”与性别有关?

(2)若问卷得分不低于80分的人称为“环保达人”.视频率为概率.

①在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保达人”又有女“环保达人”的概率;

②为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动.每次抽奖获得红包的金额和对应的概率.如下表:

红包金额(单位:元)

10

20

概率

现某市民要参加此次问卷调查,记(单位:元)为该市民参加间卷调查获得的红包金额,求的分布列及数学期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019101日,庆祝中华人民共和国成立70周年大会、阅兵式、群众游行在北京隆重举行,这次阅兵编59个方(梯)队和联合军乐团,总规模约1.5万人,各型飞机160余架、装备580余套,是近几次阅兵中规模最大的一次.某机构统计了观看此次阅兵的年龄在30岁至80岁之间的100个观众,按年龄分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示.

1)求的值及这100个人的平均年龄(同一组中的数据用该组区间的中点值为代表);

2)用分层抽样的方法在年龄为的人中抽取5人,再从抽取的5人中随机抽取2人接受采访,求接受采访的2人中年龄在的恰有1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一家商场销售一种商品,该商品一天的需求量在范围内等可能取值,该商品的进货量也在范围内取值(每天进货1次).这家商场每销售一件该商品可获利60元;若供不应求,可从其他商店调拨,销售一件该商品可获利40元;若供大于求,剩余的每处理一件该商品亏损20.设该商品每天的需求量为,每天的进货量为件,该商场销售该商品的日利润为.

1)写出这家商场销售该商品的日利润为关于需求量的函数表达式;

2)写出供大于求,销售件商品时,日利润的分布列;

3)当进货量多大时,该商场销售该商品的日利润的期望值最大?并求出日利润的期望值的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别为双曲线的左、右焦点,点P是以为直径的圆与C在第一象限内的交点,若线段的中点QC的渐近线上,则C的两条渐近线方程为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形所在平面与所在平面互相垂直,.

1)若M中点,N中点,证明:平面

2)若,且与平面所成角的正弦值为,求的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小姜同学有两个盒子,最初盒子6枚硬币,盒子是空的.在每一回合中,她可以将一枚硬币从盒移到盒,或者从盒移走枚硬币,其中盒中当前的硬币数.盒空时她获胜.则小姜可以获胜的最少回合是( )

A.三回合B.四回合C.五回合D.六回合

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,点是圆上一动点,点在线段上,点在半径上,且满足.

(1)在圆上运动时,求点的轨迹的方程

(2)设过点的直线与轨迹交于点不在轴上),垂直于的直线交于点,与轴交于点,若,求点横坐标的取值范围.

查看答案和解析>>

同步练习册答案