精英家教网 > 高中数学 > 题目详情
如图,在棱长为2的正方体ABCD-A1B1C1D1中,M,N分别是A1A,B1B的中点.
(1)求直线D1N与平面A1ABB1所成角的大小;
(2)求直线CM与D1N所成角的正弦值;
(3)(理科做)求点N到平面D1MB的距离.
(1)以DA为x轴,以DC为y轴,以DD1为z轴,建立空间直角坐标系,
∵正方体ABCD-A1B1C1D1的棱长为2,M,N分别是A1A,B1B的中点,
∴D1(0,0,2),N(2,2,1),A(2,0,0),D(0,0,0)
D1N
=(2,2,-1),
设直线D1N与平面A1ABB1所成角为θ,
∵平面A1ABB1的一个法向量
DA
=(2,0,0),
∴sinθ=|cos<
D1N
DA
>|=|
4
4+4+1
×
4
|=
2
3

∴直线D1N与平面A1ABB1所成角的大小为arcsin
2
3

(2)∵C(0,2,0),M(2,0,1),
CM
=(2,-2,1),
设直线CM与D1N所成角的为α,
D1N
=(2,2,-1),
∴cosθ=|cos<
CM
D1N
>|=|
4-4-1
4+4+1
×
4+4+1
|=
1
9

∴sinθ=
1-(
1
9
)2
=
4
5
9

直线CM与D1N所成角的正弦值为
4
5
9

(3)∵M(2,0,1),B(2,2,0),D1(0,0,2),N(2,2,1),
D1M
=(2,0,-1)
D1B
=(2,2,-2),
D1N
=(2,2,-1),
设平面D1MB的法向量
n
=(x,y,z)

D1M
n
=0,
D1B
n
=0,
2x-z=0
2x+2y-2z=0
,∴
n
=(1,1,2)

∴点N到平面D1MB的距离d=
|
D1N
n
|
|
n
|
=
|2+2-2|
1+1+4
=
6
3

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

正方体ABCD-A1B1C1D1中,异面直线AC与BD1所成角为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方体ABCD-A1B1C1D1中,E为AB中点,F为正方形BCC1B1的中心.
(1)求直线EF与平面ABCD所成角的正切值;
(2)求异面直线A1C与EF所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体ABCD-A1B1C1D1中直线A1C1与平面A1BD夹角的余弦值是(  )
A.
2
4
B.
2
3
C.
3
3
D.
3
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥S-ABCD的底面为正方形,SD⊥平面ABCD,SD=AD=2,请建立空间直角坐标系解决下列问题.
(1)求证:AC⊥SB;
(2)求直线SB与平面ADS所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图1,在等腰△ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,CD=BE=
2
,O为BC的中点.将△ADE沿DE折起,得到如图2所示的四棱锥A′-BCDE.若A′O⊥平面BCDE,则A′D与平面A′BC所成角的正弦值等于(  )
A.
2
3
B.
3
3
C.
2
2
D.
2
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知△ABC和△DBC所在的平面互相垂直,且AB=BC=BD,∠CBA=∠DBC=120°,则AB与平面ADC所成角的正弦值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在三棱锥P-ABC中,PA=PB=PC=BC,且∠BAC=
π
2
,则PA与底面ABC所成角为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在直角梯形ABCD中,∠D=∠BAD=90°,AD=DC=
1
2
AB=1,将△ADC沿AC折起,使D到D′.若二面角D′-AC-B为60°,则三棱锥D′-ABC的体积为______.

查看答案和解析>>

同步练习册答案