精英家教网 > 高中数学 > 题目详情

【题目】已知点A(l,2)在函数f(x)=ax3的图象上,则过点A的曲线C:y=fx)的切线方程是(  )

A. 6x﹣y﹣4=0 B. x﹣4y+7=0

C. 6x﹣y﹣4=0或x﹣4y+7=0 D. 6x﹣y﹣4=0或3x﹣2y+1=0

【答案】D

【解析】由于点A(1,2)在函数f(x)=ax3的图象上,

a=2,y=2x3

y′=6x2

设切点为(m,2m3),则切线的斜率为k=6m2

由点斜式得:y-2m3=6m2(x- m).

代入点A(l,2)得,2-2m3=6m2(1-m).

即有 .

解得即斜率为6

则过点A的曲线C:y=f(x)的切线方程是:

y2=6(x1)y2= (x1)

6xy4=03x2y+1=0.

故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点在函数的图象上,数列的前项和为,数列的前 项和为,且的等差中项.

)求数列的通项公式.

)设,数列满足.求数列的前项和

)在()的条件下,设是定义在正整数集上的函数,对于任意的正整数,恒有成立,且为常数,),试判断数列是否为等差数列,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次足球比赛共12支球队参加,分三个阶段进行.

(1)小组赛:经抽签分成甲、乙两组,每组6队进行单循环比赛,以积分及净剩球数取前两名;

(2)半决赛:甲组第一名与乙组第二名,乙组第一名与甲组第二名作主客场交叉淘汰赛(每两队主客场各赛一场)决出胜者;

(3)决赛:两个胜队参加决赛一场,决出胜负.

问全程赛程共需比赛多少场?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋中装有个形状大小完全相同的小球,球的编号分别为

)若从袋中每次随机抽取个球,有放回的抽取,求取出的两个球编号之和为的概率.

)若从袋中每次随机抽取个球,有放回的抽取次,求恰有次抽到号球的概率.

)若一次从袋中随机抽取个球,求球的最大编号为的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有大小形状完全相同的5个小球,其中3个白球的标号分别为1、 2 、3, 2 个黑球的标号分别为1、3.

(Ⅰ)从袋中随机摸出两个球,求摸到的两球颜色与标号都不相同的概率;

(Ⅱ)从袋中有放回地摸球,摸两次,每次摸出一个球,求摸出的两球的标号之和小于4 的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,圆轴的正半轴交于点,以点为圆心的圆与圆交于两点.

(1)当时,求的长;

(2)当变化时,求的最小值;

(3)过点的直线与圆A切于点,与圆分别交于点,若点的中点,试求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某单位用2160万元购得一块空地,计划在该空地上建造一栋至少10层,每层2000平方米的楼房.经测算,如果将楼房建为层,则每平方米的平均建筑费用为 (单位:元).

(1)写出楼房每平方米的平均综合费用关于建造层数的函数关系式;

(2)该楼房应建造多少层时,可使楼房每平方米的平均综合费用最少?最少值是多少?

(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的首项,且满足,其中,设数列的前项和分别为

Ⅰ)若不等式对一切恒成立,求

Ⅱ)若常数且对任意的,恒有,求的值.

Ⅲ)在(Ⅱ)的条件下且同时满足以下两个条件:

ⅰ)若存在唯一正整数的值满足

恒成立.试问:是否存在正整数,使得,若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设动点是圆上任意一点轴的垂线垂足为,若点在线段上,且满足

(1)求点的轨迹的方程;

(2)设直线交于 两点,点坐标为,若直线 的斜率之和为定值3求证:直线必经过定点,并求出该定点的坐标.

查看答案和解析>>

同步练习册答案