精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

已知曲线和定点 是此曲线的左、右焦点,以原点为极点,以轴正半轴为极轴,建立极坐标系.

(1)求直线的极坐标方程;

(2)经过点且与直线垂直的直线交此圆锥曲线于两点,求的值.

【答案】12

【解析】试题分析:(1由圆锥曲线化为可得利用截距式即可得出直线的直角坐标方程再化为极坐标方程即可;(2直线的斜率为可得直线的斜率为直线的方程为代入椭圆的方程为 利用直线参数方程的几何意义及韦达定理可得结果.

试题解析:(1)曲线可化为其轨迹为椭圆,焦点为,经过的直线方程为

所以极坐标方程为

2)由(1)知直线的斜率为,因为,所以的斜率为,倾斜角为,所以的参数方程为代入椭圆的方程中,得

因为点两侧,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】预计某地区明年从年初开始的前 个月内,对某种商品的需求总量 (万件)近似满足: ,且
(1)写出明年第 个月的需求量 (万件)与月份 的函数关系式,并求出哪个月份的需求量超过 万件;
(2)如果将该商品每月都投放到该地区 万件(不包含积压商品),要保证每月都满足供应, 应至少为多少万件?(积压商品转入下月继续销售)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)(其中 )的图象如图所示,为了得到g(x)=sin2x的图象,则只需将f(x)的图象(

A.向右平移 个长度单位
B.向右平移 个长度单位
C.向左平移 个长度单位
D.向左平移 个长度单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=ax2﹣(a+1)x+1
(1)解关于x的不等式f(x)>0;
(2)若对任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若在定义域内存在实数,满足,则称为“类函数”.

(1)已知函数,试判断是否为“类函数”?并说明理由;

(2)设是定义在上的“类函数”,求是实数的最小值;

(3)若 为其定义域上的“类函数”,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生对一些对数进行运算,如图表格所示:

x

0.21

0.27

1.5

2.8

lgx

2a+b+c﹣3(1)

6a﹣3b﹣2(2)

3a﹣b+c(3)

1﹣2a+2b﹣c(4)

x

3

5

6

7

lgx

2a﹣b(5)

a+c(6)

1+a﹣b﹣c(7)

2(a+c)(8)

x

8

9

14

lgx

3﹣3a﹣3c(9)

4a﹣2b(10)

1﹣a+2b(11)

现在发觉学生计算中恰好有两次地方出错,那么出错的数据是(
A.(3),(8)
B.(4),(11)
C.(1),(3)
D.(1),(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率是( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案