A. | 3个 | B. | 2个 | C. | 1个 | D. | 0个 |
分析 利用赋值法,结合基本不等式的性质进行判断即可.
解答 解:令x1=1-x2,
则不等式$\frac{{f({x_1})}}{{f({x_2})}}+\frac{{f(1-{x_1})}}{{f(1-{x_2})}}$≤2等价为$\frac{f(1-{x}_{2})}{f({x}_{2})}$+$\frac{f({x}_{2})}{f(1-{x}_{2})}$≤2,
由①知对于任意的x∈(0,1),f(x)>0;
则$\frac{f(1-{x}_{2})}{f({x}_{2})}$+$\frac{f({x}_{2})}{f(1-{x}_{2})}$≥2$\sqrt{\frac{f(1-{x}_{2})}{f({x}_{2})}•\frac{f({x}_{2})}{f(1-{x}_{2})}}$=2,
故$\frac{f(1-{x}_{2})}{f({x}_{2})}$+$\frac{f({x}_{2})}{f(1-{x}_{2})}$=2当且仅当$\frac{f(1-{x}_{2})}{f({x}_{2})}$=$\frac{f({x}_{2})}{f(1-{x}_{2})}$=1即f(x2)=f(1-x2)时成立.
此时函数f(x)关于x=$\frac{1}{2}$对称,
故丙猜想正确.
由丙同学可知f(x)关于x=$\frac{1}{2}$对称,
则f(x1)=f(1-x1),f(x2)=f(1-x2),
则不等式$\frac{{f({x_1})}}{{f({x_2})}}+\frac{{f(1-{x_1})}}{{f(1-{x_2})}}$≤2等价$\frac{f({x}_{1})}{f({x}_{2})}$+$\frac{f({x}_{1})}{f({x}_{2})}$≤2,
即2$\frac{f({x}_{1})}{f({x}_{2})}$≤2,则$\frac{f({x}_{1})}{f({x}_{2})}$≤1,
∵对于任意的x∈(0,1),f(x)>0,
∴f(x1)≤f(x2),则f(x1)=f(x2)恒成立,即函数f(x)为常数函数,故丁正确,
其他不一定正确,
故选:B.
点评 本题主要考查抽象函数的应用,利用赋值法结合基本不等式的性质是解决本题的关键.综合性较强,有一定的难度.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com