【题目】已知函数.
(1)求函数的单调增区间;
(2)函数,当时,恒成立,求整数的最小值.
【答案】(1)单调增区间是;单调减区间是(2)2
【解析】
(1)利用的导函数求得的单调增区间.
(2)解法一:将不等式分离常数,得到,构造函数,利用导数求得的最大值,由此求得的取值范围,进而求得的最小值.
解法二:将不等式分离常数,得到,构造函数,对分成、两种情况进行分类讨论,由此求得的取值范围.
(1)因为,
由于时,由得,
所以函数的单调增区间是;单调减区间是;
(2)解法一:因为,即,因为,
所以,令,
所以,
设,
则,
所以且时,,
故在上是增函数,
因为,
当时,
.
所以存在使,
所以当时,即,
当时,即,
所以在上增函数,上是减函数,
故有最大值为
,
因为,,所以,
故,即整数的最小值为2.
解法二:因为,即,因为,
所以,令,
(i)当时,因为,所以,
因此,所以只需;
(ii)当时,因为,则,
所以,
因此只需,即,
构造函数,
,
当时,在上单调递减,;
当时,,
则,不满足题意;
当时,,
则,故不满足题意;
综上可知,整数的最小值为2.
科目:高中数学 来源: 题型:
【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示
(1)由折线图可以看出,可用线性回归模型拟合月利润(单位:百万元)与月份代码之间的关系,求关于的线性回归方程,并预测该公司2019年3月份的利润;
(2)甲公司新研制了一款产品,需要采购一批新型材料,现有,两种型号的新型材料可供选择,按规定每种新型材料最多可使用个月,但新材料的不稳定性会导致材料损坏的年限不相同,现对,两种型号的新型材料对应的产品各件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:
使用寿命 材料类型 | 个月 | 个月 | 个月 | 个月 | 总计 |
如果你是甲公司的负责人,你会选择采购哪款新型材料?
参考数据:,.参考公式:回归直线方程为,其中 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的普通方程为,直线的参数方程为(为参数),其中.以坐标为极点,以轴非负半轴为极轴,建立极坐标系.
(1)求曲线的极坐标方程和直线的普通方程;
(2)设点,的极坐标方程为,直线与的交点分别为,.当为等腰直角三角形时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记无穷数列的前n项,,…,的最大项为,第n项之后的各项,,…的最小项为,.
(1)若数列的通项公式为,写出,,;
(2)若数列的通项公式为,判断是否为等差数列,若是,求出公差;若不是,请说明理由;
(3)若数列为公差大于零的等差数列,求证:是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,点在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)设为原点,过原点的直线(不与轴垂直)与椭圆交于、两点,直线、与轴分别交于点、.问:轴上是否存在定点,使得?若存在,求点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方体的棱长为2,点分别是棱的中点,则二面角的余弦值为_________;若动点在正方形(包括边界)内运动,且平面,则线段的长度范围是_________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年世界读书日,陈老师给全班同学开了一份书单,推荐同学们阅读,并在2020年世界读书日时交流读书心得.经了解,甲、乙两同学阅读书单中的书本有如下信息:
①甲同学还剩的书本未阅读;
②乙同学还剩5本未阅读;
③有的书本甲、乙两同学都没阅读.
则甲、乙两同学已阅读的相同的书本有( )
A.2本B.4本C.6本D.8本
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】图1是由边长为4的正六边形,矩形,组成的一个平面图形,将其沿,折起得几何体,使得,且平面平面,如图2.
(1)证明:图2中,平面平面;
(2)设点M为图2中线段上一点,且,若直线平面,求图2中的直线与平面所成角的正弦值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com