精英家教网 > 高中数学 > 题目详情
如图,已知四棱锥P-ABCD的底面为菱形,∠BCD=60°,PD⊥AD.点E是BC边上的中点.
(1)求证:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED;②求二面角P-AB-C大小.
(1)证明:∵E为BC边中点∴CE=
1
2
BC=
1
2
CD

又∵∠BCD=60°∴DE⊥BC∴DE⊥AD
∵PD⊥AD∴AD⊥面PDE
(2)∵AD⊥面PDE∴AD⊥PD,AD⊥DE
∴∠PDE为二面角P-AD-C的平面角∴∠PDE=60°
过P作PF⊥DE交于F,则PF⊥面ABCD
∴PF=PDsin60°=4,DF=PDcos60°=
4
3
3

在底面ABCD中:DE=4sin60°=2
3

SABED=6
3

∴①VP-ABED=
1
3
SABED•PF=
1
3
×6
3
×4=8
3

②连接BF.∵EF=
2
3
3
,BE=2
tan∠EBF=
3
3
∴∠EBF=30°
∴∠FBA=120°-30°=90°∴FB⊥AB
∵PF⊥面ABCD∴PB⊥AB
∴∠PBF为二面角P-AB-C平面角.
在△BEF中:BF=2EF=
4
3
3

tan∠PBF=
3
,∴∠PBF=60°
∴二面角P-AB-C为60°
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在棱长都为a的正三棱柱ABC-A1B1C1中,P是A1B的中点.
(Ⅰ)求PC与平面ABB1A1所成的角;
(Ⅱ)求C1到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三棱锥S-ABC中,底面为边长为6的等边三角形,SA=SB=SC,三棱锥的高为
3
,则侧面与底面所成的二面角为(  )
A.45°B.30°C.60°D.65°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形ABCD所在平面与矩形ACEF所在平面垂直,其中AB=
2
,AF=1,M是EF中点.
(1)求证:AM平面BDE;
(2)求二面角A-BD-F的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,点O是正方形纸片ABCD的中心,点E,F分别为AD,BC的中点,现沿对角线AC把纸片折成直二面角,则纸片折后∠EOF的大小为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正方形ABCD沿其对角线AC将△ADC折起,设AD与平面ABC所成的角为β,当β取最大值时,二面角B-AC-D的大小为(  )
A.120°B.90°C.60°D.45°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a.
(I)若M是底面ABCD的一个动点,且满足|MB|=|MS|,求点M在正方形ABCD内的轨迹;
(II)试问在线段SD上是否存在点E,使二面角C-AE-D的大小为60°?若存在,确定点E的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

三棱柱ABC-A1B1C1中,∠ABC=90°,BB1⊥底面ABC,D为棱AC的中点,E为棱A1C1的中点,且AB=BC=BB1=1.
(1)求证:CE平面BA1D.
(2)求二面角A1-BD-C的余弦值.
(3)棱CC1上是否存在一点P,使PD⊥平面A1BD,若存在,试确定P点位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在三棱锥P-ABC中,D、E分别是BC、AB的中点,PA⊥平面ABC,∠BAC=90°,AB≠AC,AC>AD,PC与DE所成的角为α,PD与平面ABC所成的角为β,二面角P-BC-A的平面角为γ,则α,β,γ的大小关系是(  )
A.α<β<γB.α<γ<βC.β<α<γD.γ<β<α

查看答案和解析>>

同步练习册答案