设数列{an}满足a1 = 3,an+1 = 2an+n·2n+1+3n,n≥1。
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项之和Sn。
(1)an=2n-1·(n2-n)+3n;
(2)Sn= - (n-2)·2n+1+(n-1)·n·2n-4= - (n-2)·2n+1+(n-1)·n·2n-4
科目:高中数学 来源: 题型:
|
查看答案和解析>>
科目:高中数学 来源: 题型:
|
查看答案和解析>>
科目:高中数学 来源: 题型:
π |
2 |
1 |
2an |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com