【题目】海关对同时从A、B、C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示,工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.
地区 | A | B | C |
数量 | 50 | 150 | 100 |
(1)求这6件样品中来自A、B、C各地区商品的数量;
(2)若在这6件样品中随机抽取2件送往甲机构进一步检测,求这2件商品来自相同地区的概率.
【答案】(1)各地区抽取的商品数分别别为A: 1;B: 3;C: 2;(2)
【解析】试题分析:(1)先计算出抽样比,进而可求出这6件样品来自A,B,C各地区商品的数量;(2)先计算在这6件样品中随机抽取2件的基本事件总数,及这2件商品来自相同地区的事件个数,代入古典概型概率计算公式,可得答案.
试题解析:(1)因为样本容量与总体中的个体数的比是,
所以样本中包含三个地区的个体数量分别是,,,
所以三个地区的商品被选取的件数分别为1,3,2
(2)设6件来自三个地区的样品分别为:,
则抽取的这2件商品构成的所有基本事件为:,,,,共15种个,
每个样本被抽到的机会均等,因此这些基本事件的出现是等可能的.
记事件:“抽取的这2件商品来自相同地区”,
则事件包含的基本事件有,,,共4个,
所以,即这2件商品来自相同地区的概率为.
科目:高中数学 来源: 题型:
【题目】记所有非零向量构成的集合为V,对于 , ∈V, ≠ ,定义V( , )=|x∈V|x =x |
(1)请你任意写出两个平面向量 , ,并写出集合V( , )中的三个元素;
(2)请根据你在(1)中写出的三个元素,猜想集合V( , )中元素的关系,并试着给出证明;
(3)若V( , )=V( , ),其中 ≠ ,求证:一定存在实数λ1 , λ2 , 且λ1+λ2=1,使得 =λ1 +λ2 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某次数学测验中,有6位同学的平均成绩为117分,用表示编号为的同学所得成 绩,6位同学成绩如表,
(1)求及这6位同学成绩的方差;
(2)从这6位同学中随机选出2位同学,则恰有1位同学成绩在区间中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂家举行大型的促销活动,经测算某产品当促销费用为万元时,销售量万件满足(其中, 为正常数),现假定生产量与销售量相等,已知生产该产品万件还需投入成本万元(不含促销费用),产品的销售价格定为万元/万件.
(1)将该产品的利润万元表示为促销费用万元的函数;
(2)促销费用投入多少万元时,厂家的利润最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数 ,看下面四个结论( ) ①f(x)是奇函数;②当x>2007时, 恒成立;③f(x)的最大值是 ;④f(x)的最小值是 .其中正确结论的个数为:
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com