精英家教网 > 高中数学 > 题目详情
4.若θ∈(0°,360°)且终边与660°角的终边关于x轴对称,点P(x,y)在θ角的终边上(不是原点),求$\frac{xy}{{x}^{2}+{y}^{2}}$的值.

分析 根据题意,分析可得θ=60°,由任意角三角函数的定义可得y=$\sqrt{3}$x,将其代入$\frac{xy}{{x}^{2}+{y}^{2}}$中即可得答案.

解答 解:由题意知若θ∈(0°,360°)且终边与660°角的终边关于x轴对称,
θ=60°,
∵P(x,y)在θ的终边上,
∴tanθ=$\sqrt{3}$=$\frac{y}{x}$.
即y=$\sqrt{3}$x,
∴$\frac{xy}{x2+y2}$=$\frac{x•\sqrt{3}x}{{x}^{2}+(\sqrt{3}x)^{2}}$=$\frac{\sqrt{3}}{1+3}$=$\frac{\sqrt{3}}{4}$.

点评 本题考查任意角的三角函数,解题的关键在于由θ与660°角的终边关系得到θ的大小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知已知角α的终边过点A(-1,3),求下列各式的值.
(1)$\frac{sinα+2cosα}{5cosα-sinα}$
(2)$\frac{1}{{2sinαcosα+{{cos}^2}α}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.数列{an}满足Sn=2n+2an(n∈N*).
(1)计算a1、a2、a3,a4
(2)有同学猜想an=2-2α;请根据你的计算确定α的值,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数$f(x)=3sin(ωx-\frac{π}{6})$(ω>0)和g(x)=2cos(2x+ϕ)+1(0<ϕ<$\frac{π}{2}$)的图象的对称轴完全相同.若${x_1},{x_2}∈[0,\frac{π}{2}]$,则f(x1)-g(x2)的取值范围是[-$\frac{7}{2}$,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列函数的值域.
(1)y=$\frac{2\sqrt{x}-4}{\sqrt{x}+3}$;
(2)y=2x-3+$\sqrt{13-4x}$;
(3)y=$\sqrt{1+x}+\sqrt{1-x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.cos23°sin53°-sin23°cos53°=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知F为抛物线y2=x的焦点,点A、B在该抛物线上且位于x轴两侧,$\overrightarrow{OA}$$•\overrightarrow{OB}$=6(O为坐标原点),则△ABO与△AOF面积之和的最小值为(  )
A.4B.$\frac{3\sqrt{13}}{2}$C.$\frac{17\sqrt{2}}{4}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列a0=1,an=nan-1+1,用框图和语句表示算法,输出使an≤50的最大的正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.等比数列{an}的各项均为正数,且a5=a4+2a3,若存在两项am,an使得$\sqrt{{a}_{m}{a}_{n}}$=4a1,则$\frac{1}{m}$+$\frac{4}{n}$的最小值是(  )
A.$\frac{3}{2}$B.$\frac{8}{3}$C.$\frac{5}{2}$D.9

查看答案和解析>>

同步练习册答案