精英家教网 > 高中数学 > 题目详情

【题目】公元五世纪,数学家祖冲之估计圆周率的值的范围是:,为纪念数学家祖冲之在圆周率研究上的成就,某教师在讲授概率内容时要求学生从小数点后的6位数字141592中随机选取两个数字做为小数点后的前两位(整数部分3不变),那么得到的数字大于3.14的概率为(

A.B.C.D.

【答案】D

【解析】

由题意将从小数点后的6位数字中随机选取两个数字做为小数点后的前两位可分为选出两个1、选出一个1和没有选出1三种情况,结合分步乘法、排列、组合的知识可求得总的数字个数,求出符合要求的数字个数后,利用古典概型概率公式即可得解.

由题意从小数点后的6位数字中随机选取两个数字做为小数点后的前两位,可分为以下情况:

①选出两个1,共可组成1个数字;

②选出一个1,共可组成个不同数字;

③没有选出1,共可组成个不同数字;

所以共可组成个不同的数字;

其中小于等于3.14的数字有:3.113.123.14,共3个,则大于3.14的数字个数为18

故所求概率.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 ).

1)若展开式中第5项与第7项的系数之比为38,求k的值;

2)设),且各项系数互不相同.现把这个不同系数随机排成一个三角形数阵:第11个数,第22个数,,第nn个数.设是第i列中的最小数,其中,且i.记的概率为.求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在直角梯形中,,点E上,且,将三角形沿线段折起到的位置,(如图2.

(Ⅰ)求证:平面平面

(Ⅱ)在线段上存在点F,满足,求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五面体中,平面平面.

1)求证:

2)若,且二面角的大小为,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧面为边长为的菱形,侧面为矩形,其中平面,点的中点.

1)证明:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的方程为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为

1)求圆的极坐标方程与直线的直角坐标方程;

2)设直线与圆相交于两点,求圆处两条切线的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年新型冠状病毒肺炎蔓延全国,作为主要战场的武汉,仅用了十余天就建成了小汤山模式的火神山医院和雷神山医院,再次体现了中国速度.随着疫情发展,某地也需要参照小汤山模式建设临时医院,其占地是出一个正方形和四个以正方形的边为底边、腰长为400m的等腰三角形组成的图形(如图所示),为使占地面积最大,则等腰三角形的底角为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱的侧棱和底面垂直,且所有顶点都在球O的表面上,侧面的面积为.给出下列四个结论:

①若的中点为E,则平面

②若三棱柱的体积为,则到平面的距离为3

③若,则球O的表面积为

④若,则球O体积的最小值为.

当则所有正确结论的序号是( )

A.①④B.②③C.①②③D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正四棱锥中,已知异面直线所成的角为,给出下面三个命题:

:若,则此四棱锥的侧面积为

:若分别为的中点,则平面

:若都在球的表面上,则球的表面积是四边形面积的倍.

在下列命题中,为真命题的是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案