精英家教网 > 高中数学 > 题目详情
已知方程x2+y2+4x-2y-4=0,则x2+y2的最大值是(  )
A、
9
5
B、
4
5
C、14-6
5
D、14+6
5
分析:先根据圆的方程得到圆心坐标为(-2,1),半径为3,x2+y2可看作圆上一点(x,y)到到原点距离的平方,故其最大值应为圆心到原点的距离加上半径和的平方,如此解题方案自明.
解答:解:由方程x2+y2+4x-2y-4=0得到圆心为(-2,1),半径为3,设圆上一点为(x,y)
圆心到原点的距离是
(-2)2+1 2
=
5

圆上的点到原点的最大距离是
5
+3
故x2+y2的最大值是为(
5
+3)2=14+6
5

故选D
点评:考查学生灵活运用圆的图象与方程的几何意义解题的能力,会会利用两点间的距离公式解决数学问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知方程x2+y2-x+4y+m=0.
(1)若此方程表示圆,求的取值范围;
(2)若(1)中的圆的直线x+2y-1=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;
(3)在(2)得条件下,求以MN为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2+kx+2y+k2=0所表示的圆有最大的面积,则直线y=(k+1)x+2的倾斜角α=
π
4
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.
(1)求实数m的取值范围;
(2)求该圆半径r的取值范围;
(3)求圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2+4x-2y-4=0,则x2+y2的最大值是
14+6
5
14+6
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2-2mx-4y+5m=0的曲线是圆C
(1)求m的取值范围;
(2)当m=-2时,求圆C截直线l:2x-y+1=0所得弦长;
(3)若圆C与直线2x-y+1=0相交于M,N两点,且以MN为直径的圆过坐标原点O,求m的值?

查看答案和解析>>

同步练习册答案