精英家教网 > 高中数学 > 题目详情
已知一个扇形的周长为a,求当扇形的圆心角为多大时,扇形的面积最大,并求这个最大值.
考点:扇形面积公式
专题:计算题,三角函数的求值
分析:设扇形的弧长,然后,建立关系式,结合二次函数的图象与性质求解最值即可.
解答: 解:设扇形面积为S,半径为r,圆心角为α,则扇形弧长为a-2r,
所以S=
1
2
(a-2r)r=-(r-
a
4
)2+
a2
16

故当r=
a
4
且α=2时,扇形面积最大为
a2
16
点评:本题重点考查了扇形的面积公式、弧长公式、二次函数的最值等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,现采用随机模拟试验的方法估计抛掷这枚硬币三次恰有两次正面朝上的概率;先由计算器产生0或1的随机数,用0表示正面朝上,用1表示反面朝上;再以每三个随机数做为一组,代表这三次投掷的结果,经随机模拟试验产生了如下20组随机数:
101  111  010  101  010  100  100  011  111  110
000  011  010  001  111  011  100  000  101  101
据此估计,抛掷这枚硬币三次恰有两次正面朝上的概率为(  )
A、0.30B、0.35
C、0.40D、0.65

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC,∠A=120°,
AB
AC
=-2,
AD
=
1
2
AB
,点G是CD 上的一点,
AG
=
1
3
AB
+m
AC
,则|
AG
|的最小值为(  )
A、
2
3
B、
2
2
C、
3
3
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
m
x
(m为正的常数),它在(0,+∞)内的单调变化是:在(0,
m
]
内递减,在[
m
,+∞)
内递增.其第一象限内的图象形如一个“对号”.请使用这一性质完成下面的问题.
(1)若函数g(x)=2x+
a
x
在(0,1]内为减函数,求正数a的取值范围;
(2)若圆C:x2+y2-2x-2y+1=0与直线l:y=kx相交于P、Q两点,点M(0,b)且MP⊥MQ.求当b∈[1,+∞)时,k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[0,6]上随机取一个数x,则sinx>cosx的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(x+1),g(x)=loga(1-x)(a>0,a≠1)
(Ⅰ)求函数f(x)+g(x)的定义域并判断其奇偶性;
(Ⅱ)求使f(x)+g(x)<0成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=cos(πx+φ)(0<φ<
π
2
)的部分图象如图所示.
(Ⅰ)写出φ及图中x0的值;
(Ⅱ)设g(x)=f(x)+f(x+
1
3
),求函数g(x)在区间[-
1
2
1
3
]
上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若动点A(x1,y1)、B(x2,y2)分别在直线l1:x+y-7=0和l2:x+y-5=0上移动,则AB中点M到原点距离的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在斜三角形ABC中,“A>B”是“|tanA|>|tanB|”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案