精英家教网 > 高中数学 > 题目详情
1.已知F是椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左焦点,A,B为椭圆C的左、右顶点,点P在椭圆C上,且PF⊥x轴,过点A的直线与线段PF交与点M,与y轴交与点E,直线BM与y轴交于点N,若NE=2ON,则椭圆C的离心率为$\frac{1}{2}$.

分析 由题意可得F,A,B的坐标,设出直线AE的方程为y=k(x+a),分别令x=-c,x=0,可得M,E的坐标,再由直线BM与y轴交于点N,NE=2ON,可得N的坐标,运用三点共线的条件:斜率相等,结合离心率公式,即可得到所求值.

解答 解:由题意可设F(-c,0),A(-a,0),B(a,0),
令x=-c,代入椭圆方程可得y=±b$\sqrt{1-\frac{{c}^{2}}{{a}^{2}}}$=±$\frac{{b}^{2}}{a}$,
可得P(-c,±$\frac{{b}^{2}}{a}$),
设直线AE的方程为y=k(x+a),
令x=-c,可得M(-c,k(a-c)),令x=0,可得E(0,ka),
∵直线BM与y轴交于点N,NE=2ON,
∴N(0,$\frac{ka}{3}$),
由B,N,M三点共线,可得kBN=kBM
即为$\frac{\frac{ka}{3}}{-a}$=$\frac{k(a-c)}{-c-a}$,
化简可得$\frac{a-c}{a+c}$=$\frac{1}{3}$,即为a=2c,
可得e=$\frac{c}{a}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查椭圆的离心率的求法,注意运用椭圆的方程和性质,以及直线方程的运用和三点共线的条件:斜率相等,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知在△ABC中,角A,B,C的对边分别为a,b,c,若$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{{a}^{2}+{c}^{2}-{b}^{2}}$=$\frac{2sinA-sinC}{sinC}$,且b=4.
(1)求角B;
(2)求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设函数f(x)=t|x-t|(t≠0)在区间(-∞,-1]上单调递增,则t的取值范围是(  )
A.(-∞,-1]B.[-1,0)C.(0,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数y=e2x-1的零点是0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为正方形,则下列结论:
①AD∥平面PBC;
②平面PAC⊥平面PBD;
③平面PAB⊥平面PAC;
④平面PAD⊥平面PDC.
其中正确的结论序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若点P(x0,y0)是曲线y=xex上任意一点,则|x0-y0-4|的最小值为(  )
A.4B.$3\sqrt{2}$C.$2\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将正方形ABCD沿对角线AC折起成直二面角,则直线BD和平面ABC所成的角的大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设数列{an}的前n项和为Sn,已知Sn=2n+1-n-2(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=$\frac{n}{{a}_{n+1}-{a}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设正项数列{an}的前n项和为Sn,满足Sn+1=$\frac{1}{2}$a2Sn+a1,S3=14.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=an-1,求$\frac{{a}_{1}}{{b}_{1}{b}_{2}}$+$\frac{{a}_{2}}{{b}_{2}{b}_{3}}$+…+$\frac{{a}_{n}}{{b}_{n}{b}_{n+1}}$.

查看答案和解析>>

同步练习册答案