ÒÑÖªÍÖÔ²CµÄ·½³ÌΪ
x2
4
+
y2
3
=1£¬Ö±Ïßl0£ºx=4£¬AÊÇÍÖÔ²CµÄÓÒ¶¥µã£¬µãP£¨x1£¬y1£©ÊÇÍÖÔ²ÉÏÒìÓÚ×ó£¬ÓÒ¶¥µãµÄÒ»¸ö¶¯µã£¬Ö±ÏßPAÓël0½»ÓÚµãM1£¬Ö±Ïßl¹ýµãPÇÒÓëÍÖÔ²½»ÓÚÁíÒ»µãB£¨x2£¬y2£©£¬Óël0½»ÓÚµãM2£¬
£¨1£©ÈôÖ±Ïßl¾­¹ýÍÖÔ²µÄ×ó½¹µãF£¬ÇÒʹµÃ
AP
AB
=3£¬ÇóÖ±ÏßlµÄ·½³Ì£»
£¨2£©ÈôµãBǡΪÍÖÔ²µÄ×󶥵㣬ͬxÖáÉÏÊÇ·ñ´æÔÚ¶¨µãD£¬Ê¹µÃ±ä»¯µÄµãP£¬ÒÔM1M2Ϊֱ¾¶µÄÔ²×ܾ­¹ýµãD£¬Èô´æÔÚ£¬ÇóÕâÑùµÄÔ²Ãæ»ýµÄ×îСֵ£»Èô²»´æÔÚ£»Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÍÖÔ²µÄ¼òµ¥ÐÔÖÊ
רÌ⣺¼ÆËãÌâ,Ö±ÏßÓëÔ²,Բ׶ÇúÏߵĶ¨Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨1£©ÉèPB·½³ÌΪy=k£¨x+1£©£¨k¡Ù0£©´úÈëÍÖÔ²·½³Ì£¬µÃ£¨3+4k2£©x2+8k2x+4k2-12=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí½áºÏÒÑÖªÌõ¼þ£¬½áºÏÏòÁ¿µÄÊýÁ¿»ý×ø±ê±íʾ±íʾ£¬ÄÜÇó³öÖ±ÏßlµÄ·½³Ì£»
£¨2£©¼ÙÉè´æÔÚxÖáÉ϶¨µãD£¬Ê¹µÃÒÔM1M2Ϊֱ¾¶µÄÔ²ºã¹ýµãD£¬Éè³öDµÄ×ø±ê£¬Çó³öAPºÍPBµÄ·½³Ì£¬È¡x=4µÃµ½
M1£¬M2µÄ×ø±ê£¬Ð´³öÏòÁ¿
DM1
ºÍ
DM2
µÄ×ø±ê£¬ÓÉÊýÁ¿»ýµÈÓÚ0ÁÐʽÇó³öDµÄ×ø±ê£®
½â´ð£º £¨1£©½â£ºÓÉÓÚÖ±ÏßPBµÄбÂÊ´æÔÚ£¬ÉèPB·½³ÌΪy=k£¨x+1£©£¨k¡Ù0£©
´úÈëÍÖÔ²µÄ·½³Ì
x2
4
+
y2
3
=1£¬µÃ£¨3+4k2£©x2+8k2x+4k2-12=0£¬
ÓÉP£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
µÃx1+x2=-
8k2
3+4k2
£¬x1x2=
4k2-12
3+4k2
£¬
y1y2=k2£¨x1+1£©£¨x2+1£©=k2£¨x1x2+x1+x2+1£©=
-9k2
3+4k2
£¬
AP
AB
=£¨x1-2£©£¨x2-2£©+y1y2=x1x2-2£¨x1+x2£©+4+y1y2
=
27k2
3+4k2
=3£¬
½âµÃ£¬k=¡À
15
5
£¬
¹ÊÖ±ÏßlµÄ·½³ÌΪy=¡À
15
5
£¨x+1£©£»
£¨2£©¼ÙÉè´æÔÚxÖáÉ϶¨µãD£¬Ê¹µÃÒÔM1M2Ϊֱ¾¶µÄÔ²ºã¹ýµãD£®
ÉèP£¨x1£¬y1£©£¬D£¨m£¬0£©£¬
Ôò
x12
4
+
y12
3
=1£¬µÃ12y12=36-9x12£®kAP=
y1
x1-2
£¬kBP=
y1
x1+2
£¬
ÍÖÔ²ÓÒ×¼ÏßΪx=4£®
ËùÒÔAP·½³ÌΪ£ºy=
y1
x1-2
£¨x-2£©£¬ÔòM1£¨4£¬
2y1
x1-2
£©£¬
PB·½³ÌΪ£ºy=
y1
x1+2
£¨x+2£©£¬ÔòM2£¨4£¬
6y1
x1+2
£©£®
Ôò
DM1
=£¨4-m£¬
2y1
x1-2
£©£¬
DM2
=£¨4-m£¬
6y1
x1+2
£©£®
ÓÉÒÔM1M2Ϊֱ¾¶µÄÔ²×ܾ­¹ýµãD£¬µÃ
DM1
DM2
=0£¬
¼´ÓУ¨4-m£©2+
12y12
x12-4
=0£¬
¼´£¨4-m£©2=9£¬½âµÃm=1»òm=7£®
ËùÒÔ´æÔÚxÖáÉ϶¨µãD£¨1£¬0£©»ò£¨7£¬0£©£¬Ê¹µÃÒÔM1M2Ϊֱ¾¶µÄÔ²ºã¹ýµãD£®
µãÆÀ£º±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³ÌºÍÐÔÖÊ£¬¿¼²éÁËÖ±ÏߺÍÍÖÔ²µÄλÖùØϵ£¬ÑµÁ·ÁËƽÃæÏòÁ¿µÄÊýÁ¿»ýÅжÏÁ½¸öÏòÁ¿µÄ´¹Ö±£¬¿¼²éÁËѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊÇÓÐÒ»¶¨ÄѶÈÌâÄ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÖ±ÈýÀâÖùABC--A1B1C1ÖУ¬AB=4£¬AC=AA1=2£¬¡ÏACB=90¡ã£®
£¨1£©ÇóÖ¤£ºA1C¡ÍB1C1£®
£¨2£©ÇóµãB1µ½Æ½ÃæA1BCµÄ¾àÀ룮
£¨3£©Çó¶þÃæ½ÇC1-A1B-CµÄÓàÏÒ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ¶¥µã·Ö±ðΪA¡¢B£®ÍÖÔ²³¤°ëÖáµÄ³¤Îª2£¬ÀëÐÄÂÊΪe=
1
2
£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÉèµãPÔÚÖ±ÏßÉÏx=4²»Í¬Óڵ㣨4£¬0£©µÄÈÎÒâÒ»µã£¬ÈôÖ±ÏßAP¡¢BP·Ö±ðÓëÍÖÔ²ÏཻÓÚÒìÓÚA¡¢BµÄµãM¡¢N£¬Ö¤Ã÷£ºµãBÔÚÒÔMNΪֱ¾¶µÄÔ²ÄÚ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ijУµÄѧÉú¼ÇÕßÍÅÓÉÀí¿Æ×éºÍÎÄ¿Æ×é¹¹³É£¬¾ßÌåÊý¾ÝÈçϱíËùʾ£º
×é±ðÀí¿ÆÎÄ¿Æ
ÐÔ±ðÄÐÉúÅ®ÉúÄÐÉúÅ®Éú
ÈËÊý4431
ѧУ׼±¸´ÓÖÐÑ¡³ö4È˵½ÉçÇø¾ÙÐеĴóÐ͹«Òæ»î¶¯½øÐвɷã¬Ã¿Ñ¡³öÒ»ÃûÄÐÉú£¬¸øÆäËùÔÚС×é¼Ç1·Ö£¬Ã¿Ñ¡³öÒ»ÃûÅ®ÉúÔò¸øÆäËùÔÚС×é¼Ç2·Ö£¬ÈôÒªÇó±»Ñ¡³öµÄ4ÈËÖÐÀí¿Æ×é¡¢ÎÄ¿Æ×éµÄѧÉú¶¼ÓУ®
£¨¢ñ£©ÇóÀí¿Æ×éÇ¡ºÃ¼Ç4·ÖµÄ¸ÅÂÊ£¿
£¨¢ò£©ÉèÎÄ¿ÆÄÐÉú±»Ñ¡³öµÄÈËÊýΪ¦Î£¬ÇóËæ»ú±äÁ¿¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍûE¦Î£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Çóy=
k2
x
+x£¨k£¾0£©µÄµ¥µ÷Çø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¢Ù¶ÔÓÚÈÎÒâµÄx¡ÊR¶¼ÓÐf£¨x+
2¦Ð
3
£©=f£¨x£©£»
¢Ú¶ÔÓÚÈÎÒâµÄx¡ÊR£¬¶¼ÓÐf£¨
¦Ð
6
-x£©=f£¨
¦Ð
6
+x£©£®
ÔòÆä½âÎöʽ¿ÉÒÔÊÇf£¨x£©=
 
£¨Ð´³öÒ»¸öÂú×ãÌõ¼þµÄ½âÎöʽ¼´¿É£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èôf£¨x£©ÊÇÆ溯Êý£¬ÇÒÔÚ£¨-¡Þ£¬0£©ÉÏÊÇÔöº¯Êý£¬ÓÖf£¨-2£©=0£¬ÔòÂú×㣨x+1£©f£¨x-1£©£¾0µÄxµÄÈ¡Öµ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ijµØÆû³µ×î´ó±£ÓÐÁ¿Îª60ÍòÁ¾£¬ÎªÁËÈ·±£³ÇÊн»Í¨±ã½Ý³©Í¨£¬Æû³µÊµ¼Ê±£ÓÐÁ¿x£¨µ¥Î»£ºÍòÁ¾£©Ó¦Ð¡ÓÚ60ÍòÁ¾£¬ÒÔ±ãÁô³öÊʵ±µÄ¿ÕÖÃÁ¿£¬ÒÑÖªÆû³µµÄÄêÔö³¤Á¿y£¨µ¥Î»£ºÍòÁ¾£©ºÍʵ¼Ê±£ÓÐÁ¿Óë¿ÕÖÃÂʵij˻ý³ÉÕý±È£¬±ÈÀýϵÊýΪk£¨k£¾0£©£®
£¨¿ÕÖÃÁ¿=×î´ó±£ÓÐÁ¿-ʵ¼Ê±£ÓÐÁ¿£¬¿ÕÁ¿ÂÊ=
¿ÕÖÃÁ¿
×î´ó±£ÓÐÁ¿
£©
£¨¢ñ£©Ð´³öy¹ØÓÚxµÄº¯Êý¹Øϵʽ£»
£¨¢ò£©ÇóÆû³µÄêÔö³¤Á¿yµÄ×î´óÖµ£»
£¨¢ó£©µ±Æû³µÄêÔö³¤Á¿´ïµ½×î´óֵʱ£¬ÇókµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éèf£¨x£©Îª¶þ´Îº¯Êý£¬ÇÒf£¨1£©=1£¬f£¨x+1£©-f£¨x£©=-4x+1£®
£¨1£©Çóf£¨x£©µÄ½âÎöʽ£»
£¨2£©Éèg£¨x£©=f£¨x£©-x-a£¬Èôº¯Êýg£¨x£©ÔÚʵÊýRÉÏûÓÐÁãµã£¬ÇóaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸