精英家教网 > 高中数学 > 题目详情
1.设x=cosα,且$α∈[-\frac{π}{4},\frac{3π}{4}]$,则arcsinx的取值范围是$[-\frac{π}{4},\frac{π}{2}]$.

分析 由x=cosα,$α∈[-\frac{π}{4},\frac{3π}{4}]$,可得-$\frac{\sqrt{2}}{2}$≤cosα≤1,即-$\frac{\sqrt{2}}{2}$≤x≤1.利用反正弦函数的定义可得-$\frac{π}{4}$≤arcsinx≤$\frac{π}{2}$,即可得出结论.

解答 解:∵x=cosα,$α∈[-\frac{π}{4},\frac{3π}{4}]$,
∴-$\frac{\sqrt{2}}{2}$≤cosα≤1,即-$\frac{\sqrt{2}}{2}$≤x≤1.
由反正弦函数的定义可得-$\frac{π}{4}$≤arcsinx≤$\frac{π}{2}$,即arcsinx的取值范围为[-$\frac{π}{4}$,$\frac{π}{2}$].
故答案为:[-$\frac{π}{4}$,$\frac{π}{2}$].

点评 本题主要考查余弦函数的定义域和值域,反正弦函数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设二次函数f(x)在[-1,4]上的最大值为12,且关于x的不等式f(x)<0的解集为(0,5).
(1)求f(x)的解析式;
(2)若$g(x)=3sin(2x+\frac{π}{6}),x∈[0,\frac{π}{2}]$,求函数h(x)=f(g(x))的值域;
(3)若对任意的实数x都有f(2-2cosx)<f(1-cosx-m)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知椭圆$\frac{{x}^{2}}{10-m}$+$\frac{{y}^{2}}{m-2}$=1的长轴在y轴上,若焦距为4,则m=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)与g(x)的图象拼成如图所示的“Z”字形折线段ABOCD,不含A(0,1),B(1,1),O(0,0),C(-1,-1),D(0,-1)五个点,若f(x)的图象关于原点对称的图形即为g(x)的图象,则其中一个函数的解析式可以为f(x)=$\left\{\begin{array}{l}{x,-1<x<0}\\{1,0<x<1}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知钝角△ABC的面积为2$\sqrt{3}$,AB=2,BC=4,则该三角形的外接圆半径为$\frac{2\sqrt{21}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.(x+y+z)8的展开式中项x3yz4的系数等于280.(用数值作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数$y={3^{{x^2}-1}}(-1≤x<0)$的反函数是(  )
A.$y=-\sqrt{1+{{log}_3}x}(x≥\frac{1}{3})$B.$y=-\sqrt{1+{{log}_3}x}(\frac{1}{3}<x≤1)$
C.$y=\sqrt{1+{{log}_3}x}(\frac{1}{3}<x≤1)$D.$y=\sqrt{1+{{log}_3}x}(x≥\frac{1}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,点A(-1,0)、B(1,0),点C在x轴正半轴上,过线段BC的n等分点Di作与BC垂直的射线li,在li上的动点P使∠APB取得最大值的位置记作Pi(i=1,2,3,…,n-1).是否存在一条圆锥曲线,对任意的正整数n≥2,点Pi(i=1,2,…,n-1)都在这条曲线上?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如果两个球的体积之比为8:27,那么两个球的半径之比为(  )
A.8:27B.2:3C.4:9D.2:9

查看答案和解析>>

同步练习册答案