【题目】;给定函数① ,② ,③y=|x﹣1|,④y=2x+1 , 其中在区间(0,1)上单调递减的函数序号是( )
A.①②
B.②③
C.③④
D.①④
【答案】B
【解析】解:①是幂函数,其在(0,+∞)上即第一象限内为增函数,故此项不符合要求;
②中的函数是由函数 向左平移1个单位长度得到的,因为原函数在(0,+∞)内为减函数,故此项符合要求;
③中的函数图象是由函数y=x﹣1的图象保留x轴上方,下方图象翻折到x轴上方而得到的,故由其图象可知该项符合要求;
④中的函数图象为指数函数,因其底数大于1,故其在R上单调递增,不合题意.
故选B.
本题所给的四个函数分别是幂函数型,对数函数型,指数函数型,含绝对值函数型,在解答时需要熟悉这些函数类型的图象和性质;① 为增函数,② 为定义域上的减函数,③y=|x﹣1|有两个单调区间,一增区间一个减区间,④y=2x+1为增函数.
科目:高中数学 来源: 题型:
【题目】下列各命题中不正确的是( )
A.函数f(x)=ax+1(a>0,a≠1)的图象过定点(﹣1,1)
B.函数 在[0,+∞)上是增函数
C.函数f(x)=logax(a>0,a≠1)在(0,+∞)上是增函数
D.函数f(x)=x2+4x+2在(0,+∞)上是增函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣e﹣x+4sin3x+1,x∈(﹣1,1),若f(1﹣a)+f(1﹣a2)>2成立,则实数a的取值范围是( )
A.(﹣2,1)
B.(0,1)
C.
D.(﹣∞,﹣2)∪(1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近几年,由于环境的污染,雾霾越来越严重,某环保公司销售一种PM2.5颗粒物防护口罩深受市民欢迎.已知这种口罩的进价为40元,经销过程中测出年销售量y(万件)与销售单价x(元)存在如图所示的一次函数关系,每年销售这种口罩的总开支z(万元)(不含进价)与年销量y(万件)存在函数关系z=10y+42.5.
(I)求y关于x的函数关系;
(II)写出该公司销售这种口罩年获利W(万元)关于销售单价x(元)的函数关系式
(年获利=年销售总金额﹣年销售口罩的总进价﹣年总开支金额);当销售单价x为何值时,年获利最大?最大获利是多少?
(III)若公司希望该口罩一年的销售获利不低于57.5万元,则该公司这种口罩的销售单价应定在什么范围?在此条件下要使口罩的销售量最大,你认为销售单价应定为多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,O为坐标原点,A,B,C三点满足 = + . (Ⅰ)求证:A,B,C三点共线;
(Ⅱ)已知A(1,cosx),B(1+sinx,cosx),x∈[0, ],f(x)= ﹣(2m2+ )| |的最小值为 ,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知F为抛物线y2=4x的焦点,点A,B,C在该抛物线上,其中A,C关于x轴对称(A在第一象限),且直线BC经过点F.
(1)若△ABC的重心为G( ),求直线AB的方程;
(2)设S△ABO=S1 , S△CFO=S2 , 其中O为坐标原点,求S12+S22的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com